

Series 10LHP

Piezoresistive OEM high-pressure transducer with optimum long-term stability

Features

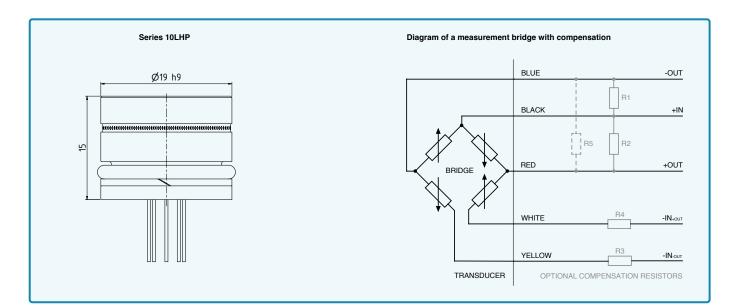
- · Optimum long-term stability
- · Robust housing made from stainless steel, Hastelloy or titanium
- · Front-flush diaphragm welded with no gaps
- · Very high proof pressure
- · Optimised thermal behaviour

Technology

- · Insulated piezoresistive pressure sensor encapsulated in an oil-filled metal housing
- · Ideal for mounting with O-ring and support ring
- Typical output signal range of 160 mV/mA

Typical applications

- · OEM
- Industry
- Laboratory
- · Oil and gas
- Oceanology


Accuracy ± 0,25 %FS

Long-term stability

± 0,15 %FS/year

Pressure ranges

0...100 bar to 0...1000 bar

Series 10LHP – Specifications

Standard pressure ranges

Absolute pressure	Absolute pressure	Proof pressure	Sensitivity		
PAA	PA		min.	type	max.
0100	0100	250	1,20	1,60	2,00
0160	0160	400	0,75	1,00	1,25
0250	0250	625	0,48	0,64	0,80
0400	0400	1000	0,30	0,40	0,50
0600	0600	1500	0,20	0,267	0,333
01000	01000	1500	0,12	0,16	0,20
bar abs.	bar	bar		$mV/(mA \times bar)$	
Reference pressure at 0 bar abs. (vacuum)	Reference pressure at 1 bar abs.	Based on reference pressure	The standard pressure ranges are available from the warehouse. Additional calibrations to intermediate pressure ranges can also be made.		

Performance

Accuracy @ RT (2025 °C)	± 0,25 %FS typ.	Non-linearity (best fit straight line, BFSL), pressure hysteresis,	
Accuracy @ NT (2025 C)	± 0.50 %FS max.	non-repeatability	
Officet @ DT (00 05 °C)	< ± 25 mV/mA	Uncompensated, the sensitivity value must be added for PA	
Offset @ RT (2025 °C)	< ± 2 mV/mA	Compensated with R3 or R4	
Compensated temperature range	-1080 °C	Other temperature ranges between -55150 °C are possible as an option	
Long-term stability	≤ ± 0,15 %FS	Per year under reference conditions.	
Position dependency	≤2 mbar	Calibrated in vertical installation position with metal diaphragm facing downwards.	
	≤±0,015 %FS/K	Zero (TCzero) pre-compensated with R1 or R2	
Temperature coefficient	≤±0,06 %/K	Sensitivity (TCsens)	
	18003000 ppm/K	Total bridge resistance (TCres)	

Electrical data

Half-open measurement bridge

i aii opon modedioment bilage					
Constant current supply	1 mA nominal 3 mA maximum				
Bridge resistance @ RT (2025 °C)	$3,5 \text{ k}\Omega \pm 20 \%$				
Electrical connection	Gold-plated pins ø 0,45 mm L = 9 mm ± 0,5 mm	Optional: Silicone wires AWG28 (0,09 mm²), L = 70 mm, other lengths on request			
Insulation	> 100 MΩ @ 500 VDC				

Series 10LHP - Specifications

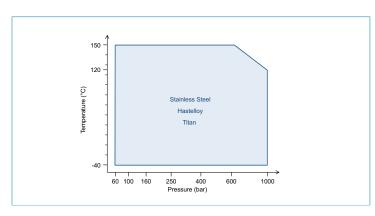
Mechanical data

Materials in contact with media

	Stainless steel AISI 316L	Series 10LHP
Housing and diaphragm	Hastelloy C-276	Series 10LHPH
	Titanium	Series 10LHPTi
O-ring	ø 15 mm × 2 mm FKM (90 Shore) -20200 °C	For media temperatures <-20 °C, FVMQ is used. Others available on request
	≥ 60600 bar: PTFE	
Support ring	> 6001000 bar: PEEK	
	ø 19 mm / ø 16 mm × 1 mm	

Other materials

Pressure transducer oil filling	Silicone oil	Others available on request
---------------------------------	--------------	-----------------------------

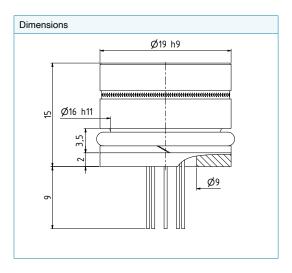

Further details

Diameter × height	ø 19 x 15 mm	See dimensions and options
	annray 20 a	Series 10LHP
Weight	approx. 30 g	Series 10LHPH
	approx. 16 g	Series 10LHPTi

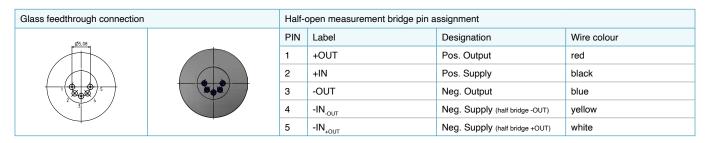
Environmental conditions

Medium temperature range	-40150 °C	Optional: -55150 °C	Observe the o-ring operating	
Ambient temperature range	-40150 °C		temperature.	
Storage temperature range	-40…150 °C		Icing not permitted	
Vibration resistance	10 g, 102000 Hz, ±10 mm		IEC 60068-2-6	
Shock resistance	50 g, 6 ms		IEC 60068-2-27	
Natural frequency (resonance)	> 30 kHz			
Load cycles @ RT (2025 °C)	> 10 m. pressure cycles		0100 %FS	
Dead volume change @ RT (2025 °C)	< 2 mm ³		U 100 /01 G	

Recommended material selection according to pressure and temperature



KELLER 10LHP series high-pressure transducers are available in various material options. Stainless steel, Hastelloy or titanium can be selected depending on the relevant requirements (see "Mechanical data").


The diagram opposite shows the material options available based on pressure and temperature. All the materials mentioned are compatible with pressure ranges up to 1000 bar.

Series 10LHP - Dimensions and options

Electrical connection

Overview of customer-specific options

- · Calibration to customer-specific pressure ranges
- · Calibration to customer-specific temperature ranges
- · Calibration with a mathematic model
- · Electrical connection via silicone wires
- O-rings made of other materials
- · Other oil filling for pressure transducers
- · Modifications to customer-specific applications

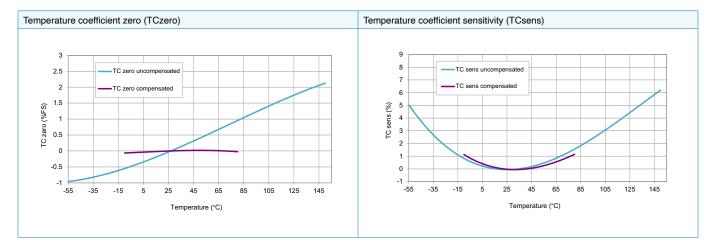
Examples of similar products

- Series 10L: Low-pressure version for pressure ranges < 200 bar
- · Series 10LX/10LHPX: with digital compensation electronics
- Series 6LHP/7LPH: high-pressure version in more compact designs

Series 10LHP – Analysis and characteristic lines

Standard analysis

The pressure transducers are intended for O-ring mounting and are therefore designed for low force transmission. This method of installation enables the values measured in the test equipment to remain unchanged. If the transducers are not de-energised when they are installed, the mechanical forces may change the measured values and the stability of the pressure transducers.


PA-10L / 10	bar / 10-10	005-118 ⁽¹⁾	Sn I10754	449 29/01 (7) dZero	1. 2. 3. 4.	Type (PA-10L) and measuring range (10 bar) of pressure sensor Serial number of pressure sensor Actual test temperatures Uncompensated zero offset
[°C] -9.5 0.1 25.0 50.2 79.9	[mV] 18.5 18.7 19.1 19.8 20.8 510 kC 3482 Or -0.8 m\ 16.41 m\ (13) [r 4 8 12 16 Stability Ok((17) tt Ok(18) 10 mA (19)	[mV] 13.3 13.3 13.1 13.0 12.9 hm (a) //toar (t1) mV] 0.0 1.1.1 12.1 13.1 14.1	[mV] -0.6 -0.6 -0.8 -0.9 -1.1 R3 P_atm (14) Lnorm [%Fs] 0.00 0.02 0.00 -0.02 -0.01	[mV] 0.2 0.2 0.0 -0.1 -0.2	5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.	Zero offset values with calculated compensation resistor R1 (+) or R2 (-) Zero offset values with calculated compensation resistors R1 or R2 and R3 or R4 Temperature zero error with calculated compensation resistors Calculated compensation resistor values R1 or R2 (TCzero) and R3 or R4 (offset) RB: bridge resistance at room temperature Calculated offset with compensation resistors R1 or R2 and R3 or R4 Sensitivity of pressure sensor at room temperature 25 °C Pressure test points Signal change at pressure test points at room temperature 25 °C Nonlinearity (best straight line through zero) Nonlinearity (best straight line) Result of the long-term stability test Lot number and identification of silicon wafer Insulation test Excitation (constant current) Date of test Test equipment

Notes

- The indicated specifications apply only for constant current supply of 1 mA. The sensor must not be supplied with more than 3 mA.
 The output voltage is proportional to the supply current. If the supply deviates from the calibration, this will cause signal shifts.
- · The compensation resistors described in this data sheet are not part of the pressure transducer and are not included in the scope of delivery.
- It is recommended to use compensation resistors with temperature coefficients of < 50 ppm/°C for large temperature ranges. Sensor and resistors can be exposed to different temperatures.
- Fine adjustment of zero with R5 potentiometer (20 Ω) is possible. In addition, a maximum TC-sensitivity can be guaranteed on request or the value for the compensation resistor (Rp) can be indicated. See Diagram "Measurement bridge with compensation" on page 1.

Characteristic lines

Examples of typical characteristic lines of the temperature coefficients, normalised at 25 °C, uncompensated and compensated.

Series 10LHP - Analysis and characteristic lines

Mathematic model

KELLER's Series 10LHP pressure transducers can be ordered with an optional compensation model.

The compensation model is a mathematical formula that helps to calculate the compensated pressure value of the pressure transducer. Both the pressure signal and the temperature signal of the pressure transducer are incorporated into the calculation. Polynomial functions are used as the basis for this mathematical model.

The pressure transducers are characterised in the factory in order to produce the compensation model. This involves measuring pressure and temperature signals at various pressure and temperature levels. Comparing the measured values with the known pressure and temperature values makes it possible to calculate the compensation coefficients of the pressure transducer. These compensation coefficients are made available to the customer along with the respective pressure transducer.

KELLER myCalibration

Content

myCalibration is a digital data platform provided free of charge to KELLER customers. It provides an easy option for transferring and providing sensor calibration data.

Format

The calibration data is available in the standard JSON file format, which facilitates smooth integration into the customer's software. The file structure is clearly defined in a publicly accessible JSON schema. This means that the customer is able to integrate the data seamlessly into their software.

Access

The platform can be accessed either via a standard web browser (web view) or directly within the customer's linked software using an API. The calibration data remains available in myCalibration for 24 months.

Web app

Customers can access the calibration data for their sensors via a user-friendly interface. The system ensures secure authentication by asking users to enter their personal login details, thereby preventing unauthorised access to the data by third parties.

The user has the option to use various search and filter functions to download calibration data for specific sensors or mass export multiple datasets simultaneously.

API

Customers have the option to use the REST API for automated access and to integrate it into their processes. This means that calibration data for new sensors can be called up automatically and then processed, for example.

Documentation

Comprehensive technical documentation including example software is available at the following link: https://mycalibration.github.io/