

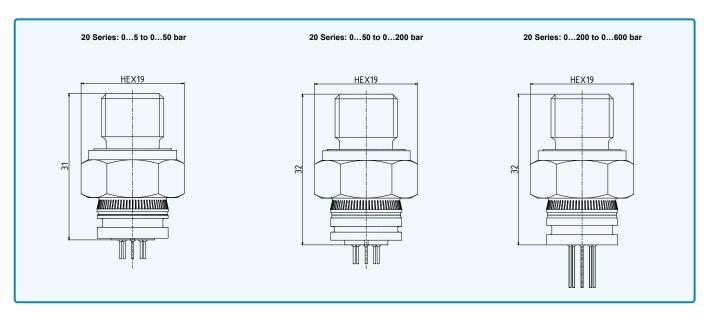
20 Series

Piezoresistive OEM pressure transducers with optimum stability

Features

- · High long-term stability
- · Robust, compact stainless-steel housing
- High proof pressure
- · Optimised thermal behaviour

Technology


- OEM
- · Industry
- · Water management
- · Air-conditioning technology

Accuracy ± 0,50 %FS Long-term stability ± 0,3 %FS / year Pressure ranges

0...5 bar to 0...600 bar

· Insulated piezoresistive pressure sensor chip, encapsulated in an oil-filled metal housing • Fully welded design with no internal seals • Typical range of output signal of 160 mV / mA **Typical applications**

20 Series – Specifications

Standard pressure ranges

Relative pressure	Absolute pressure	Absolute pressure Proof pressure			Sensitivity		
PR	PAA	PA		min.	typ.	max.	
05	05	05	15	24	32	40	
010	010	010	30	12	16	20	
030	030	030	90	4	5,3	6,7	
	0100	0100	300	1,2	1,6	2	
	0200	0200	300	0,48	0,64	0,80	
	0400	0400	600	0,30	0,40	0,50	
	0600	0600 0600		0,20	0,267	0,33	
bar rel.	bar abs.	bar abs.	bar		$mV / (mA \times bar)$		
Reference pressure at ambient pressure	at U par ans the warehouse Additional calibration		Additional calibration	ons to intermedi-			

Performance

Accuracy @ RT (20 – 25 °C)	≤ ± 0,50 %FS	Non-linearity (best fitted straight line BFSL), pressure hysteresis, non-repeatability
Office & DT (00 05 °C)	< ± 25 mV / mA	Uncompensated, the sensitivity value must be added for PA.
Offset @ RT (2025 °C)	< ± 2 mV / mA	Compensated with R3 or R4.
Compensated temperature range	-1080 °C	Other temperature ranges within -20100 °C possible as an option.
Long-term stability	≤±0,3 %FS	Per year under reference conditions.
Degree of dependency on location	≤ 2 mbar	Calibrated in vertical installation position with pressure connection facing downwards.
	≤ ± 0,025 %FS / K	Zero (TCzero) pre-compensated with R1 or R2.
Temperature coefficient	≤ ± 0,06 % / K	Sensitivity (TCsens)
	18003000 ppm / K	Total bridge resistance TC-resistance

20 Series – Specifications

Electrical data

Half-bridge configuration

Constant current supply	1 mA nominal 3 mA maximum	
Bridge resistance @ RT (2025 °C)	3,5 kΩ ± 20 %	
Electrical connection	Gold-plated pins ø 0,45 mm L = version-dependent	See Dimensions and options Optional: AWG28 (0,09 mm2) silicone wires, L = 70 mm, other lengths on request. Optional: Circuit board with JST female connector
Insulation	> 100 MΩ @ 500 VDC	

Mechanical data

Materials in contact with fluid

Housing and separating diaphragm	Stainless steel AISI 316L	
Pressure connection seal	FKM (75 Shore) -20200 °C	For medium temperatures < -20 °C FVMQ is used.

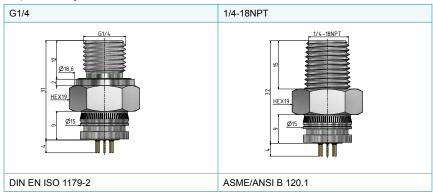
Other materials

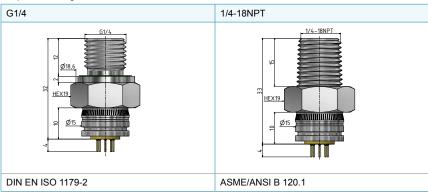
Pressure transducer oil filling	Silicone oil
---------------------------------	--------------

Further details

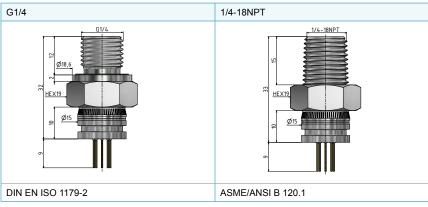
Dragoura connection	G1/4 male	See Dimensions and variants	
Pressure connection	1/4-18NPT male		
Diameter × height	Depends on pressure range		
Connection for capillary for reference pressure compensation	ø 1,2 mm × 3 mm	Optional: Capillary (silicone)	
Waight	approx. 40 g	For pressure ranges ≤ 200 bar	
Weight	approx. 45 g	For pressure ranges > 200 bar	

Ambient conditions


Media temperature range	-20100 °C	
Ambient temperature range	-20100 °C	Operating temperature, consider o-ring. Icing not permitted
Storage temperature range	-20100 °C	Tomig not pominos
Vibration endurance	10 g, 102000 Hz, ± 10 mm	IEC 60068-2-6
Shock endurance	50 g, 6 ms	IEC 60068-2-27
Natural frequency (resonance)	> 20 kHz	
Pressure endurance @ RT (2025 °C)	> 10 million pressure cycles	0100 %FS

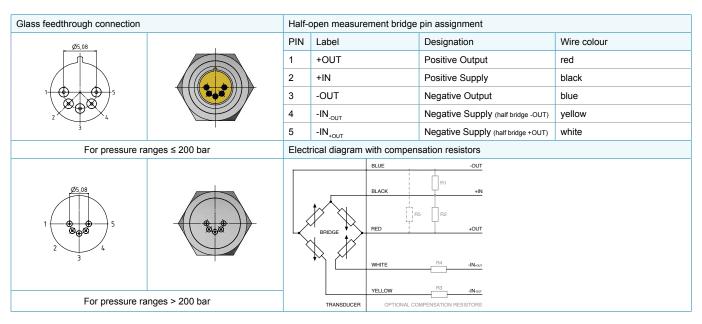

20 Series – dimensions and variants

Available pressure connection


For pressure ranges ≤ 50 bar

For pressure ranges > 50 bar to ≤ 200 bar

For pressure ranges > 200 bar



Other pressure connections available on request.

20 Series – dimensions and variants

Electrical connection

The alignment of the PIN arrangement to the hexagon can vary.

Customised configurations on request

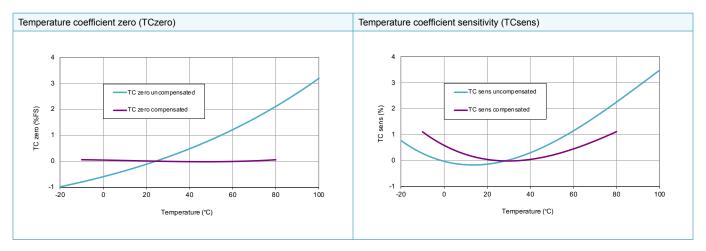
- Calibration to other pressure ranges
- Calibration to other temperature ranges
- · Calibration with mathematical modeling
- · O-Rings made of other materials
- Other oil filling types for pressure transducers
- Modifications to customer-specific applications

Examples of similar products

- 20Y Series: Pressure transducer 20 with analog compensation electronics
- 20C Series: Pressure transducer 20 with chip-in-oil technology and analog ratiometric output signal
- 20D Series: Pressure transducer 20 with chip-in-oil technology and I²C interface
- 20S Series: High-stability pressure transducer with pressure ranges of 0...0,3 bar to 0...1000 bar

20 Series – Analysis and characteristic curves

Standard analysis


(3) Temp [°C] -9.5 0.1 25.0 50.2 79.9 COMP R1 RB ZERO SENS LIN (12) [bar] 0.000 2.500 5.000 7.500 10.000 Long Term S Lot 72114-2 (12) Test 500 Volt Supply 1.000 1.09.17 (20)	(4) Zero [mV] 18.5 18.7 19.1 19.8 20.8 510 kO 3482 Oh -0.8 mV 16.41 mV (13) [n 4 8. 12 16 Color (14) 16 Color (15) 16 Color (15) 16 Color (16) 17 Color (16) 17 Color (16) 18 Color (16) 18 Color (17) 18 Color (17) 18 Color (18)	(5) +510 [mV] 13.3 13.3 13.1 13.0 12.9 hm (8) m (9) (/(10) f) (/(10) f) (/(10	Sn I10754 (6) Comp [mV] -0.6 -0.8 -0.9 -1.1 R3 P_atm (14) Lnorm [%Fs] 0.00 0.02 -0.01	29/01 (*) dZero [mV] 0.2 0.2 0.0 -0.1 -0.2	1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20.	Type (PA-10L) and measuring range (10 bar) of pressure sensor Serial number of pressure sensor Actual test temperatures Uncompensated zero offset Zero offset values with calculated compensation resistors R1 (+) or R2 (-) Zero offset values with calculated compensation resistors R1 or R2 and R3 or R4 Temperature zero error with calculated compensation resistors Calculated compensation resistor R1 or R2 (TCzero) and R3 or R4 (offset) RB: Bridge resistance at room temperature Calculated offset with compensation resistors R1 or R2 and R3 or R4 Sensitivity of pressure sensor at room temperature 25° C Pressure test points Signal change at pressure test points at room temperature 25° C Non-linearity (best straight line through zero) Non-linearity (best straight line) Result of the long-term stability test Sensor traceability information Insulation test Excitation (constant current) Date of test Test equipment
---	--	--	---	--	--	---

Notes

- The indicated specifications apply only for constant current supply of 1 mA. The sensor must not be supplied with more than 3 mA.
 The output voltage is proportional to the supply current. If the supply deviates from the calibration, this will cause signal shifts.
- · The compensation resistors described in this data sheet are not part of the pressure transducer and are not included in the scope of delivery.
- It is recommended to use compensation resistors with temperature coefficients of < 50 ppm/°C for large temperature ranges. Sensor and resistors
 can be exposed to different temperatures.
- In addition, a maximum TC-sensitivity can be guaranteed on request or the value for the compensation resistor (R5) can be indicated. See "Electrical diagram of compensation resistors" on page 5.

Characteristic lines

Examples of typical characteristic lines of the temperature coefficients, normalised at 25 °C, uncompensated and compensated.

