Series 9L Piezoresistive OEM pressure transducers with very high stability in a compact design #### **Features** - · Very high long-term stability - · Robust, compact stainless-steel housing - · Front-flush, crevice-free welded diaphragm - · Very high proof pressure - · Optimised thermal behaviour ## **Technology** - · Insulated piezoresistive pressure sensor encapsulated in an oil-filled metal housing - · Ideal for mounting with O-ring - · Typical range of output signal of 160 mV/mA ## **Typical Applications** - OEM - Industry - Laboratory - · Gas meters ## Accuracy ± 0,25 %FS Long-term Stability ± 0,20 %FS/year **Pressure Ranges** 0...0,2 bar to 0...200 bar Series 9L Electrical Diagram of a 9L with compensation resistors Ø19 h9 BLUE -OUT R1 BLACK +IN RED +OUT WHITE -IN+out YELLOW -IN-out TRANSDUCER COMPENSATION # Series 9L – Specifications ## **Standard Pressure Ranges** | Relative pressure | | Absolute pressure | Absolute pressure | Proof pressure | Sensitivity | | | |--|----------|--|--|-----------------------------|--|------|------| | PR | | PAA | PA | | min. | typ. | max. | | -0,20,2 | 00,2 | 00,2 | | | | | | | -0,30,3 | 00,3 | 00,3 | | 3 | 98 | 130 | 163 | | -0,50,5 | 00,5 | 00,5 | | | | | | | -10 | 01 | 01 | 01 | 6 | 60 | 80 | 100 | | -11 | 02 | 02 | 02 | 0 | 40 | 53 | 66,7 | | -12 | 03 | 03 | 03 | 9 | | | | | | 05 | 05 | 05 | 15 | 24 | 32 | 40 | | | 010 | 010 | 010 | 30 | 12 | 16 | 20 | | | 020 | 020 | 020 | 60 | 6 | 8 | 10 | | | 030 | 030 | 030 | 90 | 4 | 5,3 | 6,7 | | | 050 | 050 | 050 | 150 | 2,4 | 3,2 | 4 | | | | 0100 | 0100 | 300 | 1,2 | 1,6 | 2 | | | | 0160 | 0160 | | 0.75 | 4.0 | 1.05 | | | | 0200 | 0200 | 0,75 | 1,0 | 1,25 | | | bar | bar rel. | | bar | bar | mV/(mA × bar) | | | | Reference pressure at ambient pressure | | Reference
pressure at
0 bar abs.
(vacuum) | Reference
pressure at
1 bar abs. | Based on reference pressure | The standard pressure ranges are available from the warehouse. Additional calibrations to intermediate pressure ranges can also be made. | | | ## **Performance** | Accuracy @ RT (2025 °C) | ± 0,25 %FS typ. | Non-linearity (minimum value setting BFSL), | |---|-----------------|---| | Accuracy & HT (2025 G) | ± 0,50 %FS max. | pressure hysteresis, non-repeatability | | O# @ DT (00 _ 05 00) | < ± 25 mV/mA | Uncompensated, the sensitivity value must be added for PA. | | Offset @ RT (2025 °C) | < ± 2 mV/mA | Compensated with R3 or R4. | | Compensated temperature range | -1080 °C | Other temperature ranges between -55150 °C are possible as an option. | | Lang town atability | ≤±0,2 %FS | For pressure ranges > 1 bar, per year under reference conditions. | | Long-term stability | ≤±2 mbar | For pressure ranges ≤ 1 bar, per year under reference conditions. | | Position dependency | ≤ 2 mbar | Calibrated in vertical installation position with metal diaphragm facing downwards. | | Temperature coefficient TCzero | ≤ ± 0,02 %FS/K | For pressure ranges ≥ 2 bar | | pre-compensated with R1 or R2 | ≤ ± 0,4 mbar/K | For pressure ranges < 2 bar | | T | ≤ ± 0,06 %/K | For pressure ranges ≥ 3 bar | | Temperature coefficient sensitivity TCsens | ≤ ± 0,12 %/K | For pressure ranges < 3 bar | | Temperature coefficient total bridge resistance TC-resistance | 18003000 ppm/K | | # Series 9L – Specifications ## **Electrical Data** #### Half-bridge configuration | Constant current supply | 1 mA nominal
3 mA max. | | |----------------------------------|--|---| | Bridge resistance @ RT (2025 °C) | 3,5 kΩ ± 20 % | | | Electrical connection | Gold-plated pins
ø 0.45 mm
L = 4 mm ± 0,5 mm | Optional: Silicone wires AWG28 (0,09 mm2), L = 70 mm, other lengths on request. | | Insulation | > 100 MΩ @ 500 VDC | | ## **Mechanical Data** #### Materials in contact with media | Housing and diaphragm | Stainless steel AISI 316L | Optional: Hastelloy C-276, titanium | |-----------------------|--|--| | O-ring | ø 15,6 mm × 1,78 mm
FKM (75 Shore)
-20200 °C | For medium temperatures < -20 °C FVMQ is used. Other materials on request. | #### Other materials | Pressure transducer oil filling Silicone oil Others on request. | |---| |---| #### Further details | Diameter × height | ø 19 mm × 5 mm | See Dimensions and Options | |--|-----------------|--------------------------------| | Connection for capillary for reference pressure compensation | ø 1,2 mm × 3 mm | Optional: Capillary (silicone) | | Weight | approx. 8 g | | ### **Environmental conditions** | Media temperature range Ambient temperature range Storage temperature range | -40125 °C
-40125 °C
-40125 °C | Optional: -55150 °C | Operating temperature, consider o-ring. Icing not permitted. | |---|-------------------------------------|---------------------|--| | Vibration resistance | 10 g, 102000 Hz, ± 10 mm | | IEC 60068-2-6 | | Shock resistance | 50 g, 11 ms | | IEC 60068-2-27 | | Natural frequency (resonance) | > 30 kHz | | | | Endurance @ RT (2025 °C) | > 10 million pressure cycles | 0100 %FS | | | Dead volume change @ RT (2025 °C) | < 2 mm ³ | | | ## Series 9L - Dimensions and Options #### **Overview of Versions** ## **Electrical Connection** #### **Overview of Customer-specific Options** - · Calibration to other pressure ranges - · Calibration to other temperature ranges - · Calibration with mathematical modeling - · Electrical connection via silicone wires execute - Housing and diaphragm made of Hastelloy C-276 or titanium - O-Rings made of other materials - Other oil filling types for pressure transducers e.g. special oils for oxygen applications - · Modifications to customer-specific applications ## **Examples of Similar Products** Series 10L: Low-pressure transducer with maximum long-term stability Series 9FL: Version with flange Series 9LX: Pressure transducer 9L with digital compensation electronics Series 4L...7L: More compact sizes ## Series 9L - Analysis and Characteristic Lines ## **Standard Analysis** The 9L are intended for o-ring mounting and depend on the stress isolation provided by o-rings for performance within stated specifications. This installation enables the values measured during factory testing to remain valid. If the transducers are not installed free from stress, the mechanical forces may change the measured values and the stability of the pressure transducers. | Calibration sheet: Example type PA-10L | Кеу | |--|---| | PA-10L / 10 bar / 10-1005-118 (1) Sn I107547 (2) | Type (PA-10L) and measuring range (10 bar) of pressure sensor Serial number of pressure sensor Actual test temperatures Uncompensated zero offset Zero offset values with calculated compensation resistors R1 or R2 (-) Zero offset values with calculated compensation resistors R1 or R2 and R3 or R4 Temperature zero error with calculated compensation resistors Calculated compensation resistor R1 or R2 (TCzero) and R3 or R4 (offset) RB: Bridge resistance at room temperature Calculated offset with compensation resistors R1 or R2 and R3 or R4 Sensitivity of pressure sensor at room temperature 25° C Pressure test points Signal change at pressure test points at room temperature 25° C Non-linearity (best straight line) Result of the long-term stability test Sensor traceability information Insulation test Excitation (constant current) Date of test Test equipment | #### Notes - The indicated specifications apply only for constant current supply of 1 mA. The sensor must not be supplied with more than 3 mA. The output voltage is proportional to the supply current. If the supply deviates from the calibration, this will cause signal shifts. - · The compensation resistors described in this data sheet are not part of the pressure transducer and are not included in the scope of delivery. - It is recommended to use compensation resistors with temperature coefficients of < 50 ppm/°C for large temperature ranges. Sensor and resistors can be exposed to different temperatures. - In addition, a maximum TC-sensitivity can be guaranteed on request or the value for the compensation resistor (R5) can be indicated. See "Electrical diagram of compensation resistors" on page 1. ## **Characteristic Lines** $Examples \ of \ typical \ characteristic \ curves \ of \ the \ temperature \ coefficients, \ normalised \ at \ 25\ ^{\circ}C, \ uncompensated \ vs. \ compensated.$ ## Series 9L – Analysis and Characteristic Lines #### **Mathematical compensation model** KELLER's 9L Series pressure transducers can be ordered with an optional mathematical compensation model. The compensation model is a mathematical formula that helps to calculate the compensated pressure value of the pressure transducer. Both the pressure signal and the temperature signal of the pressure transducer are incorporated into the calculation. Polynomial functions are used as the basis for this mathematical model. The pressure transducers are characterised in the factory in order to produce the compensation model. This involves measuring pressure and temperature signals at various pressure and temperature levels. Comparing the measured values with the known pressure and temperature values makes it possible to calculate the compensation coefficients of the pressure transducer. These compensation coefficients are made available to the customer along with the respective pressure transducer. ## **KELLER myCalibration** #### Content myCalibration is a digital data platform provided free of charge to KELLER customers. It provides an easy option for transferring and providing sensor calibration data. #### **Format** The calibration data is available in the standard JSON file format, which facilitates smooth integration into the customer's software. The file structure is clearly defined in a publicly accessible JSON schema. This means that the customer is able to integrate the data seamlessly into their software. #### Access The platform can be accessed either via a standard web browser (web view) or directly within the customer's linked software using an API. The calibration data remains available in myCalibration for 24 months. #### Web app Customers can access the calibration data for their sensors via a user-friendly interface. The system ensures secure authentication by asking users to enter their personal login details, thereby preventing unauthorised access to the data by third parties. The user has the option to use various search and filter functions to download calibration data for specific sensors or mass export multiple datasets simultaneously. #### ΑP Customers have the option to use the REST API for automated access and to integrate it into their processes. This means that calibration data for new sensors can be called up automatically and then processed, for example. ## Documentation Comprehensive technical documentation including example software is available at the following link: https://mycalibration.github.io/