

IRC-AT Carbon Dioxide infrared sensor – thermopile detector

Dimensions are in millimetres (± 0.15mm).

Pin out details:

- 1. Lamp return
- 2. Lamp +5V
- 3. Not connected
- 4. Detector output
- 5. Reference output
- 6. Thermistor output
- 7. OV supply

Notes:

- 1. Dimensions without tolerances are nominal
- 2. Recommended PCB socket: Wearnes Cambion Ltd. code: 450-3326-01-06-00
- 3. Weight: 15g
- 4. Use antistatic precautions when handling
- 5. Do not cut pins
- 6. Do not solder directly to pins
- 7. We suggest this sensor is best used in a fixed site instrument where calibration and measurement can be carried out in-situ, and the sensor is not subject to acute mechanical stress or changes of temperature.

Performance

Maximum power requirements Minimum operating voltage Source drive frequency Active output in N_2 (peak-to-peak)

Reference output in N₂ (peak-to-peak)

Response time (t90) Warm-up time 5.0 VDC, 60mA max. (50% duty cycle source drive) 2.0 VDC, 20mA max. (50% duty cycle source drive)

3 Hz

4 to 7mV @ 3 Hz, 50% duty cycle 2 to 5mV @ 3 Hz, 50% duty cycle

< 40s @ 20°C ambient

To final zero ± 100ppm: < 30 s @ 20°C To specification: < 30 minutes @ 20°C

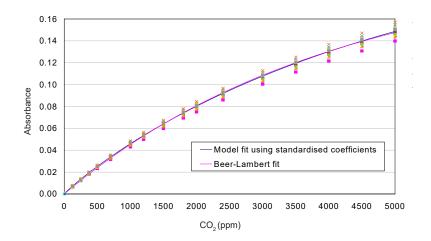
Lifetime MTBF > 5 years

Key Specifications

Temperature signal
Operating temperature range
Storage temperature range
Humidity range

Integral thermistor (NTC, R_{25} = 100K Ω B= 3940 K) -20°C to +50°C (linear compensation from 0 to 40°C)

-40°C to +75°C


0 to 95% rh non-condensing

Type*	Range (Application)	Accuracy (%FS, using universal linearisation coefficients)	Zero Resolution	Full Scale Resolution	Zero Repeatability	Full Scale Repeatability	Universal lin. coeff. b	Universal lin. coeff. c	Span calibration conc.
IAQ	0 to 5000ppm (IAQ)	1	10ppm	50ppm	±20ppm	±50ppm	0.000325	0.9363	4000ppm
Other	0 to 5 % vol (Safety)	1.5	10ppm	100ppm	±20ppm	±500ppm	0.5411	0.6716	4%
	0 to 20 % vol (Combustion)	2.5	10ppm	2000ppm	±20ppm	±2500ppm	1.0459	0.2932	16%
	0 to 100 % vol (Process Control)	tbc	10ppm	tbc	±20ppm	tbc	tbc	tbc	100%

 $^{^{\}star}$ When ordering, select 'IAQ' or 'Other', depending on your application.

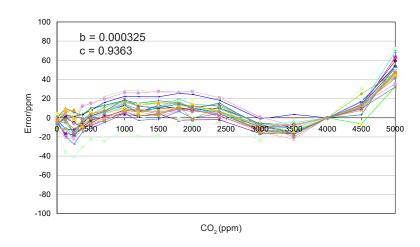
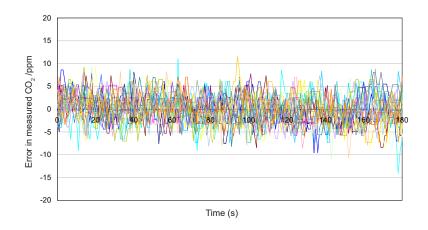


Figure 1 Beer-Lambert Performance

Typical response from 0 to 5000ppm CO₂. The fit is very close to the theoretical curve, predicted by the Beer-Lambert Law.


Figure 2 Linearisation

Custom linearisation is not necessary with the IRC-AT. Using universal linearisation constants, repeatability between cells is very good, allowing easy implementation.

For an IAQ application, a zero and then single calibration at $4000 ppm \ CO_2$ gives the error shown above: typically less than $\pm 40 ppm$ from 0 to 4500 ppm.

Figure 3 Resolution

Excellent resolution and noise at 1000ppm CO_2 for the IRC-AT is achieved by better design, not by using more expensive components.

In the interest of continued product improvement, we reserve the right to change design features and specifications without prior notification. The data contained in this document is for guidance only. Alphasense Ltd accepts no liability for any consequential losses, injury or damage resulting from the use of this document or the information contained within.(©ALPHASENSE LTD) Doc. Ref. IRC-AT/SEP22