
CATALOG

	oout Ophir Optronic Solutions Ltd. phir Power and Energy Meters - Versatility for Every Application	4 6
	alibration Capability at Ophir	7
-		
	Sensors	9
	aser Power and Energy Sensors Table of Contents	10
	ensor Finder Program	16
G	eneral Introduction	18
Р	ower Sensors	20
	ower Sensors - Introduction	21
	hotodiode Power Sensors	25
	tandard Photodiode Sensors 10pW - 3W	25
	ound Photodiode Sensors 20pW - 3W	23
	Decial Photodiode Sensors 50pW - 3W	28
		30
	raphs ccessories for Photodiode Sensors	30
		33
	tegrating Spheres tegrating Spheres - Small Dimensions 1"-1.6", 500nW - 3W	33
	tegrating Spheres - VIS 1.5" High Speed Response, Multi-functional 400nW - 4W	35
1.0.2 III 1.6.2 In	tegrating Spheres - VIS 1.5" High Speed Response, Multi-functional 400nW - 4W	36
		30
	tegrating Spheres - Large Dimensions 5.3"	
	ccessories for IS6	39
	ED measurement - UV, VIS, NIR	40
1./.I LI	ED power sensors 20pW - 3W	40
1.7.2 L	ED Irradiance and Dosage Sensors 100nW/cm ² - 15W/cm	42
	hermal Power Sensors	43
	osorption Angle Dependence and Damage Graphs for Thermal Sensors	43
	bw Noise Lock in Power Sensors 300fW - 100mW	44
	igh Sensitivity Thermal Sensors 8μW - 12W	46
	w Power Thermal Sensors 100μW - 50W	49
	ow Power BeamTrack - Power / Position / Size Sensors 100µW - 10W	51
	eamTrap up to 50W	52
	ow - Medium Power Thermal Sensors 10mW - 150W	53
	edium Power BeamTrack - Power / Position / Size Sensors 40mW - 150W	55
	andard OEM Smart Sensors 10mW - 150W	56
	edium Power Large Aperture Thermal Sensors 300mW - 300W, 100mJ - 10,000J	57
	ensors for Intense Pulsed Light IPL 100mJ - 2000J	59
	edium - High Power Fan Cooled Thermal Sensors 10mW - 1100W	60
	edium - High Power BeamTrack - Power / Position / Size Sensors 150mW - 1000W	64
	igh Power Thermal Sensors	65
	igh Power Thermal Sensors - Introduction	65
2.7.2 H	igh Power Water Cooled Thermal Sensors 0.5W - 5000W	66
2.7.3 C	alorimetric Power Meter 200W - 6000W	71
2.7.4 Ve	ery High Power Water Cooled Thermal Sensors 100W - 120kW	72
2.8 SI	nort Exposure High Power Sensors 200mW - 12,000W	75
2.8.1 H	elios Plus 50W - 12,000W	75
2.8.2 A	riel 200mW - 8000W	77
2.8.3 P	ulsed Power Mode 300mW - 10,000W	79
2.8.4 C	omet Power Pucks 20W - 10kW	80
2.9 B	eam Dumps Up to 11kW	81
	ccessories for High Power Water Cooled Sensors	82
	ber Adapter for Öphir High Power Sensors	82
	otective Housing for 1000W and L1500W Series Sensors	83
2.10.3 P	rotective Housing for 5000W, 10K-W and 15K-W Series Sensors	84
2.10.4 S	catter Shield	85
	eavy Stand for 10K-W and 15K-W	85
	chick and connectors for Water Cooled Sensors	86
	rotective Covers with Target Pattern for High Power Sensors and for Scatter Shields	86
	eamTrack Power / Position / Size Sensors	87
	eamTrack - Introduction	87
	eamTrack - Introduction eamTrack - Device Software Support	88
	eamTrack - PC Software Support	89
	bw Power BeamTrack Power / Position / Size Sensors 100µW - 10W	90
	edium Power BeamTrack Power / Position / Size Sensors 100µW - 1000	90
	edium - High Power BeamTrack Power / Position / Size Sensors 150mW - 1000W	91
	ccessories for Thermal Sensors	92
	beroptics Adapters	93
	ther Accessories	94
	nergy Sensors	95
E	nergy Sensors-Introduction	96
A	osorption and Damage Graphs for Pyroelectric Sensors	97
	/avelength Range and Repetition Rate for Energy Sensors	98
	notodiode Energy Sensors 10pJ - 15µJ	99
	yroelectric Energy Sensors 0.1μJ - 10J	100
	igh Energy Pyroelectric Sensors 10μJ - 40J	100
	nergy Sensors Accessories	104
	ccessories for Pyroelectric Sensors	109
	ulse Characterization Sensors	111
	ulse Characterization Sensors Introduction	112
	ast Photodiode Detectors (FPD)	113

1.4	Customized Solutions (OEM)	116
1.4.1	Customized Solutions (OEM) Introduction	116
1.4.2	Thermal and Photodiode Customized Solutions (OEM) sensors	117
1.4.2.1	Sensor Usage	117
1.4.2.2	Advantages of Ophir Thermal and Photodiode Customized Solutions (OEM) Sensors	118
1.4.2.3	Standard Customized Solutions (OEM) Thermal and Photodiode Sensors 100pW - 600W	119
1.4.2.4	Examples of Custom OEM Thermal and Photodiode Sensor Solutions	127
1.4.3	Pyroelectric Customized Solutions (OEM) Sensors	128
1.4.3.1 1.4.3.2	Pyroelectric Customized Solutions (OEM) Sensors - Introduction Standard Pyroelectric Customized Solutions (OEM) Sensors <0.1µJ - 40J	128 129
2.0	Power Meters	131
	Power Meter Finder	132
	Comparison of Hand Held Meters	134
	Measuring Modes Available: Sensor Type / Device	135
<u> </u>	Power Meters and PC Interfaces	136
2.1	Power Meters	137
2.1.1	Centauri	137
2.1.2	StarBright	139
2.1.3 2.1.4	Vega Nova II	<u> </u>
2.1.4	StarLite	143
2.1.6	LaserStar	143
2.1.7	NOVA	149
2.1.8	Accessories	151
2.2	Interfaces	152
2.2.1	PC Connectivity Options for Power / Energy Measurement	152
2.2.2	Compact Juno USB Interface	153
2.2.3	Juno+ USB Interface	154
2.2.4	Juno-RS RS232	154
2.2.5	EA-1 Compact Ethernet Adapter	155
2.2.6	Pulsar Multichannel and Triggered USB Interfaces	156
2.2.7	Quasar Wireless Bluetooth Interface	157
2.2.8	Summary of Computer Options for Ophir Meters and Interfaces	158
2.3	Software Solutions	159
2.3.1	StarLab	159
2.3.2	System Integrator Solutions	163
2.3.3	StarCom	164
2.3.4	LabVIEW Solutions	165
2.3.5	StarViewer Android App	166
3.0	Laser Beam Analysis	169
3.1	Choosing a Beam Profiler	170
3.1.1	Basic Questions	170
3.1.2	Beam Profiler Finder	172
3.1.3	User Guide for Choosing the Optimum Beam Profiling System	174
3.2	Benefits of Beam Profiling	176
3.3	Introduction to Camera-Based Profilers	177
3.3.1	BeamGage® - Standard Version	178
3.3.2	BeamGage® - Professional Version	185
3.3.3	Software Comparison Chart	187
3.3.4	Cameras for BeamGage®	192
3.3.4.1	190-1100nm Cameras	194
3.3.4.1.1	USB Silicon CMOS Camera	194
3.3.4.1.2	USB Silicon CCD Cameras	195
3.3.4.1.3		196
3.3.4.2 3.3.4.2.1	1440-1605nm Cameras Phosphor Coated CCD Cameras For NIR Response	197 198
3.3.4.2.1	900-1700nm Cameras	198
3.3.4.3.1	GigE / USB InGaAs NIR Cameras	199
3.3.4.4	13-355nm and 1.06-3000µm Cameras	200
3.3.4.4.1	Pyroelectric Array Cameras	200
3.3.5	BeamMic™ - Basic Laser Beam Analyzer System	206
3.3.5.1	Software Specifications	207
3.3.5.2	Cameras for BeamMic	210
3.3.6	Focal Spot Analyzer	211
3.4	Introduction to Scanning-Slit Profilers	213
3.4.1	NanoScan 2s	214
3.4.1.1	Software Comparison Chart	218
3.5	Accessories for Beam Profiling	221
3.5.1	Neutral Density Attenuators/Filters	221
3.5.2	Beam Splitter + Neutral Density Filters Combo	224
3.5.3	Beam Splitter	229
3.5.4	Beam Expanders Microscope Objectives	232
3.5.5	Beam Reducers	234
3.5.6	CCTV Lens for Front Imaging Through Glass or Reflected Surface	235
3.5.7	WB-I: Wide Beam Imager	236
3.5.8	Imaging UV Lasers	238
3.5.9	Integrated Solutions	239 240
3.5.10	Optical Camera Trigger	

3.6	Near Field Profilers	241
3.7	What is M ² ?	242
3.7.1	Camera Based Beam Propagation Analyzer: M ²	243
3.7.1.1	BeamSquared®	243
3.8	BeamWatch [®] Family	248
3.8.1	Introduction to Rayleigh Scattering Measurement Technology	248
3.8.2	BeamWatch® Non-contact, Focus Spot Size and Position Monitor For High Power YAG, Diode and Fiber Lasers	250
3.8.3	BeamWatch® Integrated - Beam Profiling System for Automated Manufacturing	253
3.8.3.1	BeamWatch Integrated 150	254
3.8.3.2	BeamWatch Integrated 500	255
3.8.4	BeamWatch® AM - Beam Profiling System for Additive Manufacturing Systems	256
3.9	BeamCheck™ - Beam profiling system for Additive Manufacturing	258
	Product Index	260
	Part Number Index	267
	Distributors List	269

Ophir Optronics Solutions Ltd., a Part of MKS instruments, Inc. was founded in 1976, as an optical coating company that has grown and diversified into other areas. Ophir employs a highly-qualified staff of over 570 engineers, technicians and skilled workers. Our company products are sold worldwide through a distribution network that includes four fully certified calibration facilities and repair centers. The majority of Ophir's laser measuring instrumentation line is exported and marketed by sales representatives in more than 35 countries around the world, the largest markets being the USA, Europe and Japan.

About MKS instruments

MKS Instruments, Inc. is a global provider of instruments, subsystems and process control solutions that measure, control, power, monitor and analyze critical parameters of advanced manufacturing processes to improve process performance and productivity. MKS's products are derived from their core competencies in pressure measurement and control, materials delivery, gas composition analysis, control and information technology, power and reactive gas generation, vacuum technology, photonics, lasers, optics and motion control. MKS's primary served markets are manufacturers of capital equipment for thin film including semiconductor devices, process manufacturing, environmental, life sciences and scientific research.

Our Facilities

Sited in an impressive 10,400 sq.m. (112,500 sq.ft.) building in Jerusalem, Israel, Ophir's main manufacturing and R&D facility is fully equipped for both the production and testing of laser measuring instrumentation, optical components and coatings. In addition, Ophir's modern facilities have in-house capability for diamond turning, aspheric optics and electronic equipment assembly.

Ophir's wide-ranging activities include:

- Production of the most complete variety of laser measurement instrumentation in existence, both off-the shelf and Customized Solutions (OEM). Production of very high precision infrared and visible optical components: lenses, mirrors, metallic optics (spherical, aspherical and diffractive), windows, domes and prisms, suitable for military (FLIR) and industrial (CO₂) applications. Ophir, a qualified manufacturer for some of the world's leading suppliers of night vision equipment, is renowned for having developed some of the highest performing and most cost-effective optical systems in the world.
- Design and production of optical assemblies. Thin film optical coatings.

 Non-contact optical equipment for distance measurement and three-dimensional mapping of objects developed by Optimet, a company in which Ophir has a majority share. These devices are based on patented technology called Conoscopic Holography. Applications include dentistry microelectronics, robotics, quality control and mechanical shops.

Laser Development

The history of laser development has been characterized by ever-increasing laser powers and energies and increasingly concentrated laser beams. Medical, industrial and scientific applications of these high power and energy density lasers require reliable and accurate measurement of power and energy. Meters for relatively high powers and energies generally operate by measuring the heat deposited onto an absorbing element. The key to accurate and reliable measurement is the makeup of this absorbing surface. It must stand up to repeated use without degradation or change in calibration.

Laser sources are constantly growing in power, energy and beam concentration. Ophir has an ongoing program of development of durable absorbing surfaces that will continue to stand up to the most punishing laser sources as they grow in intensity and Ophir has some of the highest damage threshold absorbers in the industry.

Ophir - Spiricon - Photon brings the same leading edge innovation to laser beam profile measurement with its famous Pyrocam, its in house designed SP and Nanoscan cameras and BeamGage software.

Ophir's Laser Measurement Group products are used in three highly competitive and sophisticated fields: medical, industrial and research. Each of these areas is further divided into end users and OEMs.

Medical

Ophir is the largest producer of laser power and energy measurement equipment for the medical market, where Ophir's power measurement devices are incorporated into laserbased instrumentation. Our products are vital to medical laser manufacturers and to the hospitals and doctors who are end-user laser purchasers.

Medical lasers cover the entire spectrum of wavelengths from the 193 nm excimer laser to the 10.6 micron CO_2 laser where the main laser wavelengths are 193, 248, 532, 694, 755, 808, 1064, 2100, 2940 and 10600 nm. These lasers are used for general surgery, eye surgery, gynecology, ORL, dermatology and other applications. They have outputs which start at mW and mJ on the low end going up to tens of joules and hundreds of watts at the high end. The trend in medical lasers is to progress to more powerful systems, especially in the dermatology field, and to

introduce diode lasers and intense pulsed light (IPL) sources instead of the traditional gas or solid state lasers.

Ophir has developed special equipment that can for the first time measure the output of IPL sources.

Regulating bodies such as the FDA in the USA require the manufacturers to have at least one channel of power or energy monitoring in each laser. Ophir's high-quality OEM products provide an extraordinarily efficient answer to this requirement.

Industrial

Industrial laser customers include both laser manufacturers and laser users in job shops and factories. Ophir answers the needs of this market by providing measurement systems that have a high damage threshold and the ability to measure high repetition rates with high accuracy.

There are several main types of lasers for industrial and material processing applications: Fiber Lasers, Diode, Nd:YAG lasers and Solid-state/disk lasers in the range of 980-1070 nm with some systems in blue and green range. A significant market share still remains with CO₂ laser at 10.6 microns. They are characterized by their high power output, which ranges from 100W to 120kW, depending on the application. With its capabilities in power, energy and profile measurement, Ophir has developed many products for this market including an integrated Laser Beam Analyzer for industrial YAG lasers which measures beam profile, temporal profile, power and energy, all in one unit. A subset of the industrial market is the microelectronics industry, which uses excimer lasers for exposing the photoresist in the

photolithography process. This process uses lasers with a short wavelength of 193 to 345 nm that operate at high repetition rate and high energy. The main factor influencing the component density possible on the microchip is the wavelength of the laser already used in the process, and therefore the trend is to progress to shorter wavelengths. Ophir has a range of unique products specified for the photolithography market, including off-the-shelf and Customized Solutions (OEM) products.

RoHS

Almost all Ophir and Spiricon Laser measurement products are RoHS compliant. The few products that are not RoHS are specified as such in the ordering information or in the specification tab.

ISO/IEC 17025:2017

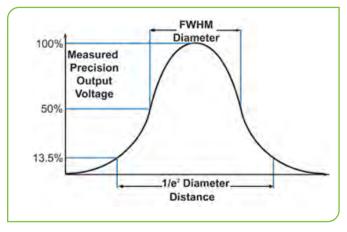
The ISO/IEC 17025:2017 is given to calibration laboratories who have achieved the highest standards of quality, administration, and technical operations. Standing up to ISO/IEC 17025:2017 standard provides the opportunity for Ophir to serve as an international calibration laboratory.

This accreditation gives customers full confidence that Ophir works according to the highest standards, and among other things it provides for technical competence of staff, validity of methods, proper calibration and maintenance of equipment, and many other areas. Full documentation can be found on our website.

3.1 Choosing a Beam Profiler

A laser beam profiler will increase your chance of success anytime you wish to design or apply a laser or when you find your laser system is no longer meeting specifications. You would never think of trying to build a mechanical part without a micrometer. So why attempt to build lasers or laser systems with only a power meter? You will produce the desired results more quickly if you can measure basic things like beam width or size, beam profile and power.

We believe as Lord Kelvin said: "You cannot improve it if you cannot measure it".


3.1.1 Basic Questions

When choosing a laser beam profiler there are a plethora of choices to do the job, including CCD and CMOS cameras, scanning slit sensors, InGaAs and pyroelectric cameras, pinhole, and knife edge sensors to mention some. How does one decide which is the proper solution for one's application and from which company to obtain the profiler system? When making the selection there are four basic questions about the laser application that one must answer.

Wavelength?

The first question is: *What wavelength(s) do you intend to measure?* The answer to this question determines the type of detector needed, and what the most cost effective approach may be. For the UV and visible wavelength range from <193nm up to the very near infrared at around 1300nm, silicon detectors have the response to make these measurements. The largest number of cost effective solutions exist for these wavelengths including CCD cameras and silicon detector-equipped scanning aperture systems. Which of these is the best will be determined by the answers to the other three questions.

For the near infrared, from 800 to 1700nm, the choices become less abundant. In the lower end of this range from 800–1300nm the CCD cameras may still work, but InGaAs arrays become necessary above 1300nm. These are more expensive; four to five times the cost of the silicon CCDs. Scanning slit systems

equipped with germanium detectors are still quite reasonably priced, within a few hundred dollars of their silicon-equipped cousins. At the mid and far infrared wavelengths the pyroelectric cameras and scanning slits sensors with pyroelectric detectors provide viable alternatives, again the best approach being determined by the answers to the subsequent questions.

Beam Size?

The second question is: *What beam width or spot size do you wish to measure?* This question can also impact the profiler type choices. Arrays are limited by the size of their pixels. At the current state-of-the-art pixels are at best around 4µm for silicon arrays, and considerably larger, 30µm to 80µm with InGaAs and pyroelectric cameras. This means that a UV-NIR beam should be larger than 50µm or roughly 10 pixels in diameter to ensure that enough pixels are utilized to make an accurate measurement. Beams with spot sizes smaller than 50µm can be optically magnified or expanded to be measured with a camera. InGaAs camera pixels are around 30µm, limiting the minimum measurable beam size to 300µm; pyroelectric array pixels are even larger at 80µm, meaning the beams need to be at least 0.8mm to yield accurate results. Scanning slit profilers can measure with better than 3% accuracy beams that are four times the slit width or larger, putting the minimum beam sizes at around 8µm without magnification. Those investigators who want to measure their beams directly without additional optics could find this to be an advantage.

Power?

The third question is: *What is the power of the beam*? This determines the need for attenuation, and/or beam splitting, as well as the detector type. Array detectors, such as silicon CCD, CMOS, InGaAs and Pyroelectric cameras will usually need attenuation when measuring lasers. Scanning slit type profilers can measure many beams directly without any attenuation, due to the natural attenuation of the slit itself. Detector arrays and knife-edge profilers, by their nature, will allow the entire beam to impact the detector at some point in the measurement, leading to detector saturation unless the beam is appropriately attenuated. Lasers of any wavelength with CW powers above 100mW can be measured with the pyroelectric detector-equipped scanning slit profiler, making it the easiest profiler for many applications. Scanning slit profilers can directly measure up to kilowatts of laser power, depending on the spot size or power density.

CW or Pulsed?

The final question is: *Is the laser continuous wave (CW) or pulsed*? Lasers that operate pulsed at repetition rates less than ~10 kHz are best profiled with an array. Scanning apertures cannot measure many beam sizes at this repetition rate effectively in real time. CW and pulsed beams with repetition rates above ~10 kHz can be measured with scanning slits if the combination of the repetition rate and the beam size are sufficient to have enough laser pulses during the transit time of the slits through the beam to obtain a good profile. Knife-edge profilers are only able to measure CW beams. Pulsed beams have other considerations when selecting a beam profiling instrument, particularly pulse-to-pulse repeatability, and pulse-energy damage thresholds of the slit material or in the case of array detectors, beam sampling optics.

One More Question

Besides these four questions about the physical nature of the laser to be measured, there is one more that needs to be asked: How accurate does the measurement need to be? Not all profilers or profiler companies are equal in this regard. Properly designed, maintained and calibrated camera and slit - based profilers can provide sub-micron precision for both beam width and beam position (centroid) measurements.

A state-of-the-art CCD array with 4µm pixels can provide ±2% beam width accuracy for beams larger than 50µm. Accuracy for smaller beams may be worse due to the effects of insufficient resolution or pixilation. In addition, the effects of attenuation optics, noise and proper baseline zeroing or offset compensation can have dramatic impact on the accuracy of the measurement. Cameras that are not designed specifically for profiling may be much worse due to the presence of a cover glass and/or IR cut-off filter covering the array. These optical elements must be removed for laser profiling to prevent interference fringes or distortion of the beam being tested. Camera arrays provide a true two-dimensional picture of the beam and will show fine structure and hot and cold spots, which a slit will integrate out. Some applications do not require a map of the laser power distribution within the spot: spot size and spot location are sufficient. Other applications require that a careful mapping of the complete mode structure is made. These applications require 2D, array based sensors. The accuracy requirement is a question of what the data is to be used for. Accurate collimation or focus control requires the highest beam size accuracy. Checking the laser for hot spots, uniformity or beam shape dictates that the 2D sensor is employed and is as important as absolute size measurement accuracy.

How and where a profiler is to be used is also an important consideration in the equation. Profilers used by research and development scientists are often specialized. Ease-of-use and high throughput may be of no consequence if the purpose is to characterize specific optical systems that are well understood by the investigator. On the other hand, when a profiler needs to be used on the factory floor for quality assurance of the manufacturing process, ease-of-use, high throughput, and reproducibility become paramount. In this case the profiler requiring the least "fiddling" is generally the best fit. Here there is a competition between the intuitive and the ease-of-use. Some people find the 2-dimensional camera array to be the most intuitive, because they can relate to the idea of "taking a picture" of the laser beam; X-Y scanning slits may seem less intuitive. For any process that uses or works with CW or high frequency pulsed lasers the scanning slit will have the advantage of measuring the beam directly, possibly even at its focus point, without additional attenuation optics. The dynamic range of these systems is also broad enough to measure both the focused and the unfocused beam without changing the level of attenuation. Camera arrays, on the other hand will require attenuation adjustment.

Conversely, if the important aspect of the measurement is the two-dimensional image of the beam, or if the laser is pulsed at a low repetition rate, the array will be the solution; even if it means attenuation optics.

Also, many factory applications may want to 'embed' the beam profiler into a manufacturing cell or a piece of automation so the measurements and possibly pass/fail results are completed automatically. If so, look for a system that has this ability. Automation capability typically means the laser beam profile system communicates to other applications through LabView, Excel or .NET.

Whether choosing a camera or scanning slit system the user must first determine the laser beam measurement environment and what measurements are the most important to the success of the application. Ease of use and absolute spot size favors the scanning slit system while knowing about the hot and cold spots or the image of the beam under test, or any low repetition pulsed laser, requires a camera based beam profiling system. The assistance of knowledgeable product specialists is required to provide analysis of the measurement requirements of your laser application as well as to describe the features and benefits of available products.

3.1.2 Beam Profiler Finder

Finding the proper beam profiler and associated accessories to meet your beam profiling needs has never been easier. With our Beam Profiler Finder program just enter your laser parameters and the proper profilers for your application along with recommended accessories will be displayed on the screen. The program calculates the power and energy density capabilities of components, based on the laser wavelength, pulse length, repetition rate and other relevant parameters. It also compares all the other requirements such as the required aperture at every point based on the beam size, maximum and minimum power, energy etc.

In addition to finding the right profiler solution for your application, the Beam Profiler Finder Program offers the following features: • E mailing of report

- Calculation of input power and energy density and average power
- Tips on further action if no solution is found

Order of Selection

The sensors are selected in terms of cost effectiveness and ease of use, i.e.cost of the total solution balanced against ease of use and quality of profile.

Aperture

Since it is not practical to allow the beam to fill the entire aperture, the sensors are selected so that the sensor aperture is always at least 2mm or 10% larger than the beam and in the case of a Gaussian beam, 1.5 times the Gaussian beam diameter to insure that 99% of the beam is inside the aperture. If the beam is rectangular its corners may touch the aperture. The aperture is checked all along the beam path from the attenuators thru the beam expander / reducer and thru the camera.

Using the Beam Profiler Finder Program

The Beam Profiler Finder Program is available for use online on the Ophir website at the Beam Profiler section.

lep 1 Measurement Type 🛎 Boa	im Pro	file C M Squared - Beam Propagation							
Slep 2 Laser Beam Criteria		Step 3 Enter Laser Parameters							Step 4
Laser OCW		1/e ² Diameter at focusing lens (mm) * Wavelength *		10 1070			am	•	Find Beam Profiler
Pulsed	U.	· Energy Range - Min to Max *		10	to	100	mJ		-
Beam Gaussian Flat-Top	9	Power Range - Min to Max * Distance From Lens to Focal Spot mm *	.0		to				Max. Power Density at Source W/cm2 2.55
Measurement		Focal Spot Diameter <mark>in um</mark> *		60					Max. Energy Density 3/cm2
Average Only		Max Rep Rate *		10			Hz	۲	0.25
O Every Pulse		Pulse Width *		7				*	Average Power W
Beam Parallel? • Yes or divergence<1° • Converging • Divergent									1

1. When the program is started, the above screen appears: In Step 1, Select Measurement type : "Beam Profile" or "M² - Beam Propagation". 2. In Step 2 select the laser type [CW or pulsed], the beam type [flat top or Gaussian and if flat top, circular or rectangular] and whether the beam is parallel, converging or diverging. If converging and you intend to measure the focal spot, you must input the beam size at the focusing lens and the distance from the lens to the focal spot. Note that a divergent beam is one typically from a LED or VECSEL. Enter No if the beam is slightly divergent but basically parallel. Also, if the beam profiler cannot be inserted close to the focusing lens, enter the distance from nearest practical approach and the beam diameter at that point.

3. In Step 3, Enter the required laser parameters: beam diameter, wavelength, max/min power or max/min energy, rep rate and pulse width.
If minimum power / energy is not entered, then the program assumes the minimum is 1/2 of the maximum.
In Step 4 click "Find Beam Profiler".

4. The combination of beam profilers and accessories that meet specified criteria will be listed in the output screen shown below. The input parameters are listed on top.

5. If you click on the light blue tinted items in the output, you will be sent to the appropriate web page on that item.

6. To email the results, fill in your email and click Email.

		Result	s For:
Power D	niy Geussian 1/(e^2) Dia	meter at focusing lens 10mm Energy Width 7ns Focal Length 150	av Range 10mJ to 100mJ Wavelength 1070nm Rep Rate 10Hz Pul mm Focal Spot Sizes 60um
#	Model	Description	Accessories Needed
1 SP920	or SP920G or L1665	Si camera standard	LESSOUS-NIR SP93466 Add L of 2 ND3 New SP208283
2 SP907	or SP920s	Si Camera	X4 expender SPZ17022 or X6 expender SPZ08257 LBS300s-NIR SP90466
	If you	Email results to:	of your beam, use the sensor finder here

Power/Energy Sensors

In order to find a compatible power/energy sensor for your application, click on "here".

Beam Propagation - M²

M Squared option enables user to choose equipment capable beam propagation analysis, including Beam Watch or BeamSquared and wide selection of lens to optimize measurement and provide accurate results.

tep 1 Measurement Type 🗆 Bea	n Profile · M Squared - Beam Propagation					
Step 2 Laser Beam Criteria	Step 3 Enter Laser Parameters					Step 4
Laser © CW	Beam Diameter at beam Waist (mm) * Wavelength *	2 1070		netti	¥	Find Beam Profiler
Pulsed Beam Parallel?	Power Range - Min to Max *	100 to	500	mW	*	Max. Power Density at Input W/cm2
Yes or divergence<1° O Converging	Divergence Half angle mrad Distance from Beam Waist to focusing Lens (rnm) *	100				30.58 Max. Energy Density
						1/cm2 0.00e+0
						M Squared

3.1.3 User Guide for Choosing the Optimum Beam Profiling System

Laser Wavelength	Power			Minimum Beam Size						
	<100mW	100mW-100W	>100W	<20µm	>20 <50µm	>50µm	>500µm	>1mm		
	NS-Si	NS-Pyro		NS-Si/3.5/1.8	NS-Si/9/5	NS-Si/9/5	NS-Si /9/5	NS-Si /9/5		
	SP932U	SP932U	NS-Pyro		NS-Pyro/9/5	NS-Pyro/9/5	NS-Pyro/9/5	NS-Pyro/9/5		
UV-Vis	SP920s	SP920s	SP932U			SP932U	SP932U	SP932U		
	LT665	LT665	SP920s			SP920s	SP920s	SP920s		
NIR 1000- 1100nm	NS-Ge	NS-Pyro	LT665			LT665	LT665	LT665		
	SP932U	SP932U	BW	NS-Ge/3.5/1.8	NS-Ge/9/5	NS-Ge/9/5	NS-Ge/9/5	NS-Ge/9/5		
	SP920s	SP920s	NS-Pyro		NS-Pyro/9/5	NS-Pyro/9/5	NS-Pyro/9/5	NS-Pyro/9/5		
	LT665	LT665	SP932U			SP932U	SP932U			
			SP920s			SP920s	SP920s			
Industrial & Additive										
Fiber	BC	BC	BC, BW		BC	BC, BW	BC, BW	BC		
CO2	Pyrocam	Pyrocam						Pyrocam		
	NS-Ge	NS-Pyro		NS-Ge/3.5/1.8	NS-Ge/9/5	NS-Ge/9/5	NS-Ge/9/5	NS-Ge/9/5		
			NS-Pyro		NS-Pyro/9/5	NS-Pyro/9/5	NS-Pyro/9/5	NS-Pyro/9/5		
Telecom and						SP1203	SP1203	SP1203		
Eye-Safe 1100-1800nm						SP1201	SP1201	SP1201		
						XEVA	XEVA	XEVA		
	Pyrocam	Pyrocam	Pyrocam				Pyrocam	Pyrocam		
	NS-Ge	NS-Ge	NS-Ge	NS-Ge/3.5/1.8	NS-Ge/9/5	NS-Ge/9/5	Pyrocam	NS-Ge/9/5		
							SP1203	SP920s-1550		
							SP1201	SP1203		
1500-1600nm	SP920s-1550	SP920s-1550	SP920s-1550			SP920s-1550	XEVA	SP1201		
	LT665-1550	LT665-1550	LT665-1550			LT665-1550	SP920s-1550	XEVA		
							LT665-1550	LT665-1550		
	Pyrocam	NS-Pyro		Pyrocam w/ Beam Expansion	NS-Pyro/9/5	NS-Pyro/9/5	NS-Pyro/9/5	NS-Pyro/9/5		
MIR & FIR		Pyrocam	NS-Pyro				Pyrocam	Pyrocam		
			Pyrocam							

Abbreviations:

FIR	Far Infrared	
Ge	Germanium	
HP	High Power	
MIR	Mid-Infrared	
l IV-Vie	l Iltraviolet - Visible	

NIR	Near Infrared
Si	Silicon
SP	Indicates cam
NS	NanoScan
01	

Indicates camera profiler NanoScan

BC BW

BeamCheck BeamWatch

Laser Wavelength	Minimum Beam Size		CW or Pulsed	I		Customer Priority					
	>5mm	>10mm	CW	<1KHZ		Cost	2D/3D	No optics	Speed	Ease of use	
	Pyrocam	NS-Pyro		Pyrocam w/ Beam Expansion	NS-Pyro/9/5	NS-Pyro/9/5	NS-Pyro/9/5	NS-Pyro/9/5	NS	NS	
UV-Vis		Pyrocam	NS-Pyro				Pyrocam	Pyrocam			
			Pyrocam								
			NS	SP932U	SP932U	SP932U	SP932U	NS	NS	NS	
NR 1000-	BW		SP932U	SP920s	SP920s	SP920s	SP920s	BW			
100nm	LT665	L11059	SP920s	LT665	NS		LT665				
		LT665	LT665		LT665						
			BW								
ndustrial & Additive											
Fiber	Pyrocam	Pyrocam	Pyrocam	Pyrocam	Pyrocam	NS/Pyrocam	Pyrocam	NS/Pyrocam	Pyrocam	Pyrocam	
002								NS/Pyrocam			
				SP1203	SP1203		SP1203				
				SP1201	SP1201		SP1201				
Telecom and Eye-Safe			NS	XEVA	XEVA	NS	XEVA	NS	NS	NS	
1100-1800nm					NS		Pyrocam				
	Pyrocam										
					NS						
			SP1203	SP1203	SP1203						
500-1600nm			SP1201	SP1201	SP1201						
	SP920s-1550	LT665-1550	XEVA	XEVA	XEVA	SP920s-1550	SP920s-1550	NS	NS	NS	
	LT665-1550			LT665-1550	LT665-1550		LT665-1550				
			NS	Pyrocam	NS	NS	Pyrocam	NS	NS	NS	
VIR & FIR	Pyrocam		Pyrocam		Pyrocam						

Abbreviations:

FIR	Far Infrared
Ge	Germanium
HP	High Power
MIR	Mid-Infrared
UV-Vis	Ultraviolet - Visible

Near Infrared Silicon Indicates camera profiler NanoScan

NIR Si SP NS

BeamCheck BeamWatch

BC BW

3.2 Benefits of Beam Profiling

You can get more out of your laser

• Figure 1 shows an industrial Nd: YAG laser, near Gaussian beam, with 100 Watts output power and 1.5kW/cm² power density. Figure 2 is the same Nd: YAG beam at greater power, 170 Watts, but it split into 2 peaks producing only 1.3kW/cm² power density. The power density of the beam decreased 13% instead of increasing by the 70% expected. Without measuring the beam profile and beam width, you would not know what happened to your power density, and why the performance did not improve.

Laser cavities become misaligned

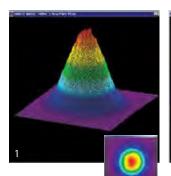
• Figures 3 & 4 are beam profiles of CO₂ lasers used for ceramic wafer scribing in the same shop. The second laser with the highly structured beam produced mostly scrap parts, until the laser cavity was aligned.

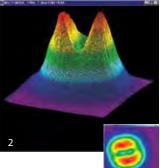
Off axis delivery optics

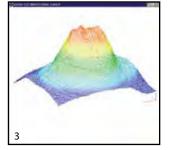
• Figures 5 & 6 show an industrial Nd:YAG laser with misaligned turning mirror, before and after adjustment.

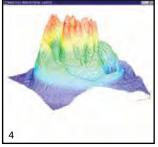
Alignment of devices to lenses

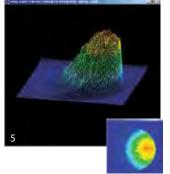
• Figures 7 & 8 show beam profiles during alignment of a collimating lens to a laser diode. The first profile shows poor alignment of the lens to the diode, which can easily be improved when seeing the profile in real time.

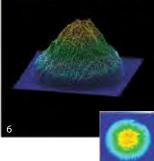

Laser amplifier tuning

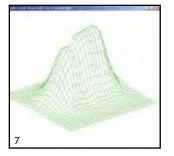

• Figures 9 & 10 show a Cr:LiSAF femtosecond laser oscillator beam with a near Gaussian output, and what happens to the oscillator beam with poor input alignment.

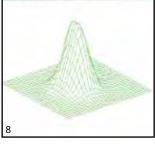

All these examples illustrate the need for beam monitoring

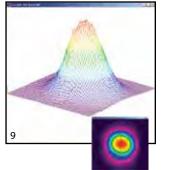

- If the beam has problems, you must (or should) measure the beam and you must (or should) see the profile of the beam to make corrections.
- Most laser processes can be improved
- Scientific experiments can be more accurate
- Commercial instruments can be better aligned
- Military devices can have greater effectiveness
- Industrial processing produces less scrap
- Medical applications are more precise

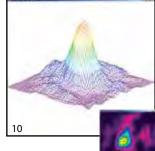

Just knowing the beam profile can make the difference between success and failure of a process.











Beam Attenuating Accessories

A camera-based beam profiler system consists of a camera, profiler software and a beam attenuation accessory. Spiricon offers the broadest range of cameras in the market to cope with wavelengths from 13nm, extreme UV, to 3000 µm, in the long infrared. Both USB and GigE interfaces are available for most wavelength ranges providing flexibility for either laptop or desktop computers.

BeamGage[®], the profiling software, comes in two versions: Standard and Professional. Each builds off of the next adding additional capability and flexibility needed for adapting to almost any configuration requirement.

Spiricon also has the most extensive array of accessories for beam profiling. There are components for attenuating, filtering, beam splitting, magnifying, reducing and wavelength conversion. There are components for wavelengths from the deep UV to CO₂ wavelengths. Most of the components are modular so they can be mixed and matched with each other to solve almost any beam profiling requirement needed.

Acquisition and Analysis Software

The BeamGage software is written specifically for Microsoft Windows operating systems and takes full advantage of the ribbonbase, multi-window environment. The software performs rigorous data analyses on the same parameters, in accordance with the ISO standards, providing quantitative measurement of numerous beam spatial characteristics. Pass/Fail limit analysis for each of these parameters can be also applied.

- ISO Standard Beam Parameters
- Dslit, Denergy, D4σ
- Centroid and Peak location
- Major and Minor Axis
- Ellipticity, Eccentricity
- Beam Rotation
- Gaussian Fit
- Flat-top analysis / Uniformity
- Divergence
- Pointing stability

For data display and visualization, the user can arrange and size multiple windows as required. These may contain, for example, live video, 2D Topographic and 3D views, calculated beam parameters and summary statistics in tabular form with Pass/Fail limit analysis, and graphical strip chart time displays with summary statistics and overlays. Custom configured instrument screens with multiple views can be saved as configuration files for repeated use. Data can be exported to spreadsheets, math, process/ instrumentation and statistical analysis programs, and control programs by logging to files or COM ports, or by sharing using LabView or ActiveX Automation.

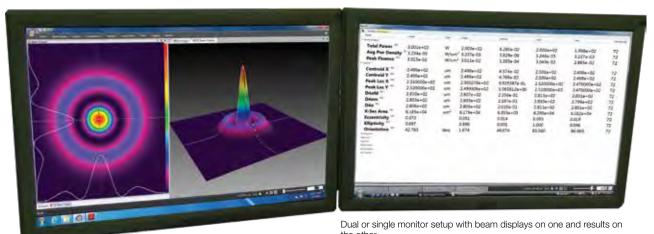
- Video Dual Aperture Profiles
- Beam Statistics
- 3D Profile View
- 2D Topographic View
- Time Statistics Charts
- Pointing / Targeting
- Hide measurements and features not in use for user simplicity
- Notes

3.3.1 BeamGage®-Standard Version

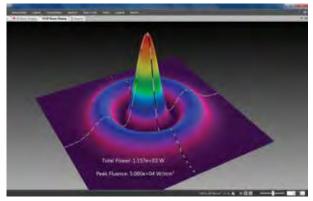
- Extensive set of ISO quantitative measurements
- Patented Ultracal[™] algorithm for highest accuracy
- measurements in the industry
- Customizable user interface for 'ease of use'
- Auto-setup and Auto-exposure capabilities for fast set-up and optimized accuracy
- Statistical analysis on all calculated results displayed in real time
- New BeamMaker[®] beam simulator for algorithm self-validation

The performance of today's laser systems can strongly affect the success of demanding, modern laser applications.

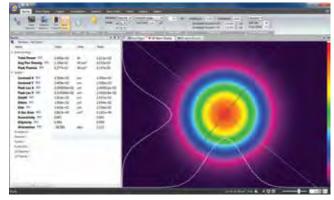
The beam's size, shape, uniformity or approximation to the expected power distribution, as well as its divergence and mode content can make or break an application. Accurate knowledge of these parameters is essential to the success of any laserbased endeavor. As laser applications push the boundaries of laser performance it is becoming more critical to understand the operating criteria.


For over thirty years Ophir-Spiricon has developed instruments to accurately measure critical laser parameters. Our LBA and BeamStar software have led the way. Now with the introduction of BeamGage, Ophir-Spiricon offers the first "new from the ground up" beam profile analysis instrument the industry has experienced in over 10 years. <image>

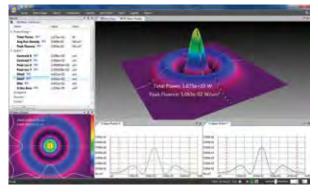
BeamGage includes all of the accuracy and ISO approved quantitative results that made our LBA software so successful. BeamGage also brings the ease-of-use that has made our BeamStar software so popular. Our patented UltraCal algorithm, guarantees the data baseline or "zero-reference point" is accurate to 1/10 of a digital count on a pixel-by-pixel basis. ISO 11146 requires that a baseline correction algorithm be used to improve the accuracy of beam width measurements. UltraCal has been enhanced in BeamGage to assure that accurate spatial measurements are now more quickly available.



See Your Beam As Never Before:


The Graphical User Interface (GUI) of BeamGage is new. Dockable and floatable windows plus concealable ribbon tool bars empowers the BeamGage user to make the most of a small laptop display or a large, multi-monitor desktop PC.

(Note that results can be magnified large enough to see across the room).



Beam only (Note results overlaid on beam profile).

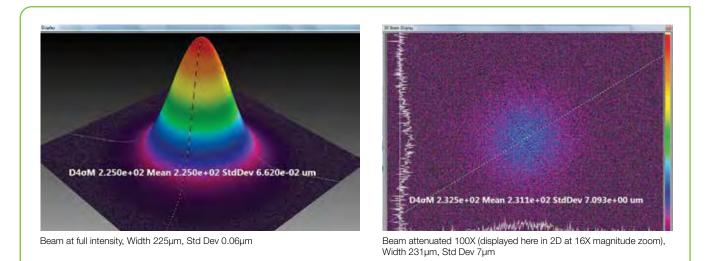
Beam plus results

• 3D displays Rotate & Tilt. All displays Pan, Zoom, Translate & Z axis Zoom

Multiple beam and results windows.

(Note quantified profile results on 3D display & quantified 2D slices).

Ultracal: Essential, or no big deal?


If you want accurate beam measurements, you want Ultracal.

What is Ultracal?

Our patented, baseline correction algorithm helped establish the ISO 11146-3 standard for beam measurement accuracy. The problems with cameras used in beam profile measurements are: a) The baseline, or zero, of the cameras will drift with time and temperature changes, and b) include random noise. Ultracal is the only beam profiler algorithm that sets the baseline to "zero", and, in the center of the noise. (Competitive products use other less sophisticated algorithms that perform a baseline subtraction, but truncate the noise below the "zero" of the baseline. This leaves only a "positive" component, which adds a net value to all beam measurements).

Try the following on any other beam profiler product to see the inherent error if you don't use Ultracal.

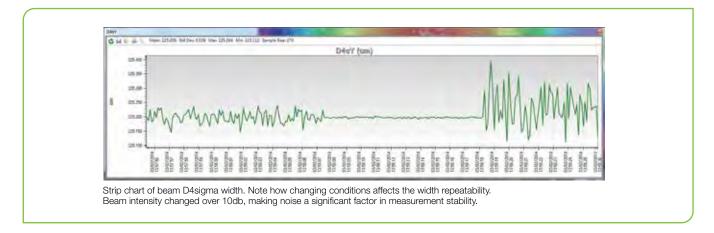
- 1. Measure a beam with full intensity on the profiler camera.
- 2. Olnsert a ND2 filter (100X attenuation) into the beam and measure it again.
- **3.** Compare the results.
- 4. The Standard Deviation below is about 3%, which is phenomenal compared to the 100% or more of any beam profiler without Ultracal.

Adding the use of Automatic Aperture improves the accuracy to 1%. (The conditions of this measurement is a camera with a 50dB SNR).

5. You normally don't make measurements at such a low intensity. But occasionally you may have a drop in intensity of your beam and don't want to have to adjust the attenuation. Or, you may occasionally have a very small beam of only a few tens of pixels. In both of these cases, Ultracal becomes essential in obtaining accurate measurements.

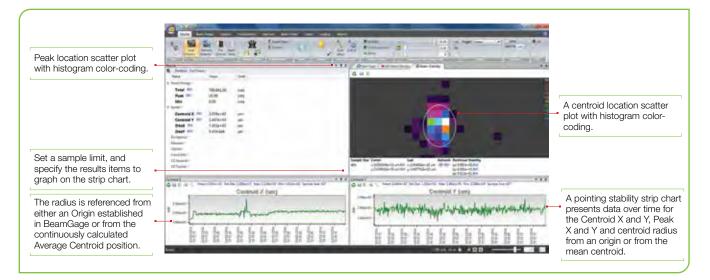
Beam Measurements and Statistics

BeamGage allows you to configure as many measurements as needed to support your work, and comes standard with over 55 separate measurement choices. To distinguish between calculations that are based on ISO standards and those that are not, a graphical ISO logo is displayed next to appropriate measurements. You can also choose to perform statistical calculations on any parameter in the list.

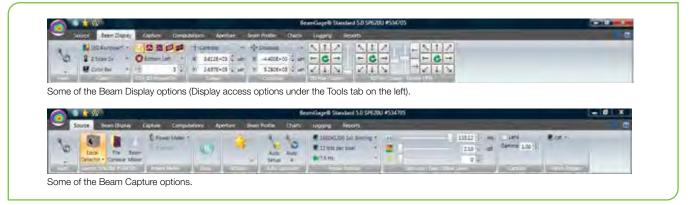

esulta	M	-	Results	-						
Ranthon Full Frame *			B Partition. Full Frame *						-	
Name	Value	Units -	Name	Value	Lints	Mean	Std Dev	Max	Min	Sample Size
Spatial**			F Power/Energy *							
Centroid X 150	3.121e+00	mm	Total Power ISO	2.809++02	W	2.809e+02	4.096e-02	2.810e+02	2.808e+02	248
Centroid Y ISO	3.121e+00	mm	Peak Fluence 150	8.105e+01	W/mr	8,111++01	1.5586-01	8.170++01	8.073e+01	248
Peak Loc X 150	3,100000e+00	mm L	Efficiency 150		88					
Peak Loc Y 150	3.125000e+00	mm	% in Aperture	100.00	5	100.00	0.00	100.00	100.00	248
D4oM ISO	4.449e+00	mm	E Spatial -							
D4am B0	4.405#+00	interr	Centroid X ISO	3.122e+00	mm	3.121e+00	2.820e-04	3.122e+00	3.121e+00	262
DkeM 10/90	3.778e+00	mm	Centroid Y 150	3.122#+00	mm	3.121e+00	2.683e-04	3.1220+00	3.121e+00	262
Dkem 10/90	3.685e+00	inm	Peak Loc X 150	3.125000e+00	mm	3.124046e+00	2.578e-02	3.200000e+00	3.050000e+00	262
DkeM 16/84 150	3.477++00	mm	Peak Loc Y ISO	3.125000e+00	mim	3.128721e+00	2.567e-02	3.200000e+00	3.075000e+00	262
Dkem 16/84 50	5,368e+00	mm	D4oM ISO	4.451#+00	mm	4.450e+00	1.175e-03	4.454e+00	4.435e+00	1.733
D%pkM	2.7146+00	men	D4cm 150	4.406e+00	mm	4.407e+00	1.2084-03	4.421e+00	4.403e+00	1,733
D%pkm	2.594e+00	mm	DkeM 10/90	3.767e+00	mm	3.770e+00	5,9854-03	3.785e+00	5.750e+00	262
X-Sec Area 190	1.540e+01	mm ²	Dkem 10/90	3.674e+00	imm	3.676e+00	6.6296-03	3.695e+00	3.653e+00	262
Eccentricity ISO	0.138		Eccentricity ISO	0.141		0,139	0.003	0.147	0.132	262
Ellipticity ISO	0.990		Ellipticity ISO	0.990		0.990	0.000	0.991	0.989	48
Divergesce *			Divergence**							
H Gaussian*			Gaussian *							
Gauss Centroid X	3.125039e+00	mm	TopHet*							
Gauss Centroid V	3.124977e+00	mm	Frame 3rd or							
Goodness of Fit	0.694		1D Gaustian *							
Roughness of Fit	0.217		1D TopHat *							

Small sample of possible measurements out of a list of 55

Sample of calculation results with statistics applied


Multiple Charting Options

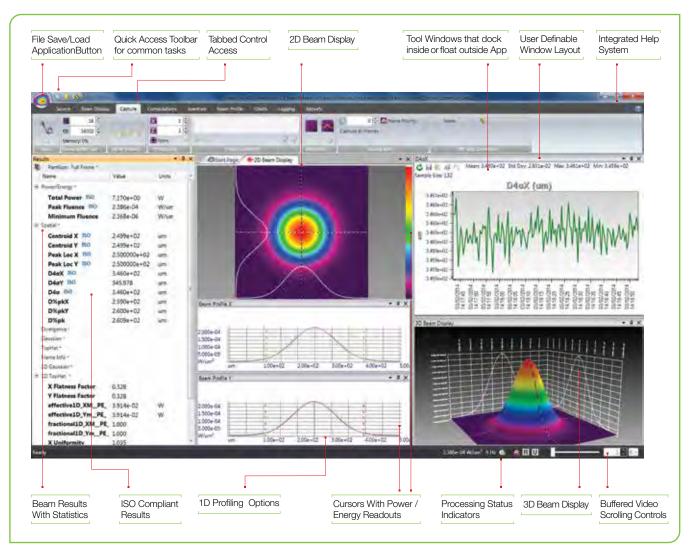
You can create strip charts for stability observations on practically any of the calculations options available. Charts enable tracking of short or long term stability of your laser.


Beam Pointing Stability

Open the Pointing Stability Window to collect centroid and peak data from the core system and display it graphically. View a chart recorder and statistical functions in one interface:

Easy to Use and Powerful

BeamGage is the only beam profiler on the market using modern Windows 7 navigation tools. The menu system of BeamGage is easy to learn and easy to use with most controls only one mouse click away. Some ribbon toolbar examples:



3.3.1

182 JULY 1, 2022

Ophir[®]

BeamGage Main Display Screen

Pass / Fail with Password Protection for Production Testing

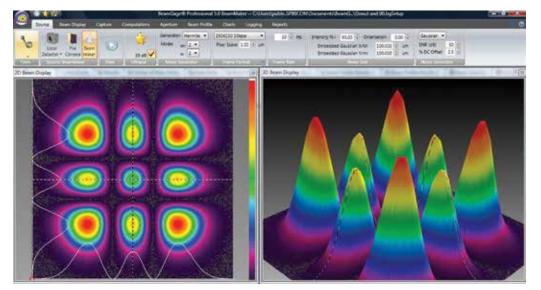
BeamGage allows the user to configure the displayed calculations; set-up the screen layout and password protect the configuration from any changes. This permits secure product testing as well as data collection for Statistical Process Control (SPC), all while assuring the validity of the data.

Name	Value	Mean	Std Dev	Max	Min	Unite
Power/Energy *						
≡ Spatial *						
Centroid X 150	7.831e+01	7.831e+01	2.849e-03	7.832e+01	7.830e+01	um
Centroid Y 150	7.965e+01	7.965e+01	3.047e-03	7.966e+01	7.964e+01	um
Peak Loc X 150	7.000000e+01	7.073199e+01	1.340173e+0	7.500000e+01	6.700000e+01	um
Peak Loc Y 150	7.100000e+01	7.183659e+01	1.333245e+0	7.500000e+01	6.800000e+01	um
D4oX ISO	1.238e+02	1.238e+02	8.334e-03	1.2396+02	1.238e+02	um
D40Y 150	124.041	124.053	0.008	124.079	124.027	um
D4g 150	1.239e+02	1.239e+02	6.395e-03	1.240e+02	1.239e+02	um

Failures (or successes) can be the impetus for additional actions including a TTL output signal or PC beep and the termination of further data acquisition.

Unique Features of BeamGage - Standard

Power/Energy Calibration


Using the USB or GigE output from select Ophir power/ energy meters, the BeamGage application will display measured power/energy values from the full range of Ophir thermopile, photodiode and pyroelectric sensors. Pulsed lasers can be synced up to 100Hz, or the frame rate of the triggered camera, whichever is less. This is the first time in the industry a laser power meter has been married to a laser beam profile system.

BeamGage is the only product to integrate profiling and power meter measurements

BeamMaker®; Numerical Beam Profile Generator

BeamGage contains a utility, BeamMaker, that can synthetically generate beam profile data by modeling either Laguerre, Hermite or donut laser beams in various modal configurations. BeamMaker permits the user to model a beam profile by specifying the mode, size, width, height, intensity, angle, and noise content. Once generated the user can then compare the theoretically derived measurements to measurements including experimental inaccuracies produced by the various measurement instruments and environmental test conditions. Users can now analyze expected results and confirm if measurement algorithms will accurately measure the beam even before the experiment is constructed. BeamMaker can help laser engineers, technicians and researchers understand a beam's modal content by calculating results on modeled beams for a better understanding of real laser beam profiles. BeamMaker is to laser beam analysis as a function generator is to an oscilloscope.

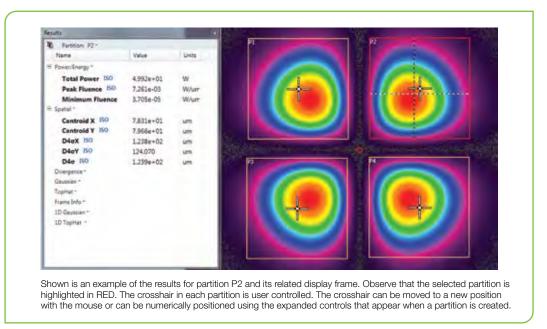
BeamMaker producing a synthetically generated Hermite TEM₂₂ beam and displayed in both 2D and 3D

Integrated automatic Help linked into the Users Guide

Touch sensitive Tool tips are available on most all controls, and "What's This" help can provide additional details. Confused about what something is or forgot how it works, just go to the top right corner and touch the "What's This" help icon, then click on the control or menu item that you want more info about and you are taken to the explanation within the BeamGage Users Guide.

Multilingual

BeamGage comes with both Japanese and Chinese user interface. Country specific manuals can be downloaded from the ophiropt.com/photonics web site.



3.3.1

Professional is an upgrade version of BeamGage-Standard that has all of the BeamGage-Standard features plus additional functionality.

Image Partitioning

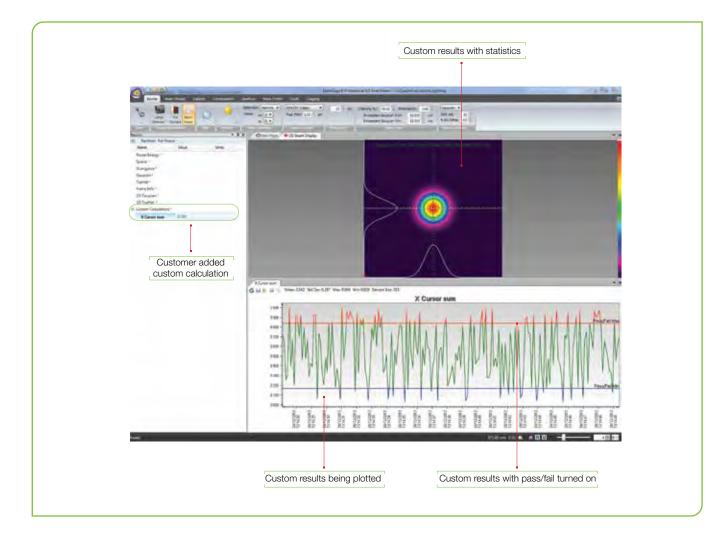
Partitioning allows the user to subdivide the camera image into separate regions, called partitions, and compute separate beam results within each partition. When using partitioning special results items can be displayed that relate to delta values between the computed centroids or peaks of each partition. Partitioning is useful to enable separate analysis of individual beams when multiple beams impinge on the camera simultaneously. This feature is particularly useful when analyzing multiple fibers in a single bundle.

Automation Interface

BeamGage Professional provides an automation interface via .NET components to allow customers the ability to build custom applications' that incorporate the laser beam analysis and processing power of BeamGage. The BeamGage automation interface allows developers to control BeamGage programmatically via a set of "puppet strings" known as the automation interface. The automation interface was developed to provide the ability to base control decisions for a second application on results and behaviors recognized by BeamGage. With this ability users can quickly and efficiently meet their manufacturing/analysis goals with minimum human interaction.

The automation interface was designed to achieve two main goals. First, to allow the BeamGage user to programmatically do what they could otherwise do via the graphical user interface (GUI). Second, to expose stable interfaces to the user that will not change, causing breaks to their dependent code. Interface examples for LabVIEW, Excel and .NET VB are included.

Custom Calculations


If BeamGage-Standard does not have the measurement you need the Professional version permit the user to program-in their own set of calculations. User defined computations are treated the same as other BeamGage standard calculations.

These custom results are displayed on the monitor, logged with results, and included on hard copy print-outs as if they were part of the original application.

An example of a customer generated custom equation.

$$S = \frac{1}{\pi^2} \left| \int_0^{2\pi} \int_0^1 \exp(2\pi i \Delta W(\rho, \theta)) \ \rho d\rho d\theta \right|^2$$

186 JULY 1, 2022

FOR LATEST UPDATES, PLEASE VISIT WWW.OPHIROPT.COM/PHOTONICS

Ophir[®]

3.3.3 Software Comparison Chart

Features	BeamGage [®] Standard	Upgrade to BeamGage® Professional to include: (all features in Standard plus)
Features Overview	User selectable for either best "accuracy" or "ease of use"	
	Supports our patented Ultracal algorithm plus	
	Auto-setup and Auto-exposure capabilities	
	Extensive set of ISO quantitative measurements	
	Support for USB, GigE and Pyrocam™ IIIHR and	Supports InGaAs and large format L11059 cameras
	Pyrocam™ IV cameras	
	New Beam Maker® beam simulator for algorithm self validation	
	See below for more detailed description	
	Simultaneous 2D and 3D displays	
	Multi-instance, multi-camera use	
	Results synchronized to select models of Ophir power/energy	
	meters. Supported products include: Vega, Nova II, Pulsar and	
	Juno, in both 32 and 64bit OS. (Quasar is not supported)	
	Supports Satellite windows on multiple monitors	
	Continuous zoom scaling in both 2D and 3D	
		Window partitioning to allow analysis of multiple beams from single camera image
	Camera ROI support on USB and GigE cameras	
	Manual and Auto-aperturing to reduce background effects	
	Pass/Fail on all results items, w/multiple alarm options	
	Beam Pointing Stability scatter plot and stripchart results	
	Full featured logging capabilities in a reloadable industry	
	standard data file format	
	Configurable Report Generator that allows cut and paste of	
	results, images and settings	NET Automation interface that allows for remote control.
	Supports English, German, Japanese and Chinese Windows 7	Examples in LabView, Excel and .Net VB
	(64) and Windows 10	
	Multilingual GUI in English, Japanese and Chinese	
	Administrator can lock software options for non-administrators	
Quantitative Calculations; Basic Results	(per ISO 11145, 11146-1/-3, and 13694)	
Power/Energy Results	Total power or energy (Can be calibrated or sync'd to an external Ophir power/energy meter)	
	Peak power/energy density	
	Min. Fluence	
	Average pulse power	
	Peak pulse power	
	Device efficiency	
	% in Aperture	
Spatial Results	Peak and Centroid locations	
ppallal nesults	Beam width	
	Second Moment (D4s)	
	Knife Edge 90/10	
	Knife Edge (User selectable level)	
	Percent of Peak (User selectable)	
	 Percent of Total Energy (User selectable) 	
	 Encircled power smallest slit @ 95.4 	
	 Moving slit (User selectable) 	
	Beam diameter	
	 Average diameter (based on x/y widths) 	
	 Second Moment (D4s) 	
	Encircled power smallest aperture 86.5	
	Encircled power smallest aperture (User selectable level)	
	Elliptical Results	
	Elliptical orientation	
	Elliptical orientation Ellipticity	
	Eccentricity	
	Distance Measurement	
	Cursor to Crosshair	
	Centroid to Crosshair	
	Area Results	
	Beam cross-sectional area	

Features	BeamGage [®] Standard	Upgrade to BeamGage [®] Professional to include: (all features in Standard plus)
Divergence	Focal Length method	
	Far-field two-point method	
	Far-field Wide Angle method	
iaussian Fit	2D whole beam fits	
	1D line fits	
	Height	
	Width X/Y	
	Centroid	
	Goodness of fit	
	Roughness of fit	
ophat Results	2D and 1D	
	Flatness	
	Effective Area	
	Effective Power/Energy	
	Fractional Effective Power/Energy	
	Effective Average Fluence	
	Uniformity	
	Plateau Uniformity	
	Edge Steepness	
	1D or 2D surface inclination	
her Quantitative Items	Frame Averaging	
	Frame Summing	
	Frame Reference Subtraction	
	Image Convolution	
	Camera signal/noise calculator Row and Column summing with results loggable	
	Row and Column summing with results loggable	Caalabla Internetti I liata guara ja va autobla
		Scalable Intensity Histogram, exportable
	(100 11070)	X or Y axial off axis image correction
eam Stability Displays and Results	(per ISO 11670)	
	Pointing Stability of Centroid	
	 Scatter Plot display w/histogram 	
	Mean Centroid	
	 Azimuth angle of the scatter 	
	 Stability (M'/m'/S) 	
	Max Radius	
	 X/Y centroid/peak Strip chart plots 	
	 Sample/Time controlled 	
	Pass/Fail limits	
	Auto scaling	
	 Beam Width/Diameter Strip Charts with Results 	
	X/Y M/m beam widths plots	
	Beam Diameter plot	
	 Mean/Std Dev/Min/Max results displayed 	
	Power/Energy Strip Charts	
	Total Power/Energy plot	
	Peak fluence plot	
	Avg Power plot	
	Elliptical Results Strip Chart	
	Elliptical orientation plot	
	Ellipticity plot	
	Eccentricity plot	
	 Mean/Std Dev/Min/Max results displayed 	
ustom Calculations		User can program-in own set of calculations
eam Profile Display Options	Utilizes advanced hardware accelerated graphics engines.	
	All display windows can be satellited to utilize multiple display	
	monitors. Can open one each simultaneous 2D and 3D beam display	
	windows	
	Common color palette for 2D and 3D displays	
	Common color palette for 2D and 3D displays Can open X and/or Y 1D beam slice profiles overlaid onto the	
	2D or 3D displays or in separate windows	
	Continuous software zooming in both 1D, 2D and 3D displays	
	Pan to any detector location	
	Continuous Z axis display magnitude scaling	
	Multiple 128 color palettes user selectable	
	Results items can be pasted into 2D, 3D, 1D, Pointing stability	
	or Chart display windows.	
		Able to partition the camera imager into multiple regions with separate results.

Features	BeamGage [®] Standard	Upgrade to BeamGage [®] Professional to include: (all features in Standard plus)
1D Features	Available overlaid with 2D and 3D or in separate windows	
	X any Y plots on separate or combined displays	
	1D displays with basic results and column row summing option	
	Tophat 1D displays with Tophat results	
	Gaussian 1D displays with Gaussian fit results	
	1D Profile display of the Gauss fit results on 1D, 2D and 3D	
	displays	
2D Features	Continuously zoomable and resizable displays in satellitable	
	window Continuous Z axis display magnitude scaling	
	Zoomable to subpixel resolution for origin and cursor	
	placements	
	Pixel boundaries delineated at higher zoom magnifications	
	Adjustable Cursors that can track peak or centroid	
	Adjustable Crosshairs that can track peak or centroid	
	Adjustable manual apertures	
	Viewable Auto-aperture placement	
	Displayed beam width marker	
	Integrated Mouse actuated pan/zoom controls	
	Separate 2D pan/zoom window to show current view in 2D	
	beam display	
	Manual or fixed origin placement	
	· · · · · · · _ · · _ /	Ability to create partitions using the manual aperture controls
BD Features	3D graphics utilize solid surface construction with lighting and shading effects	
	Integrated Mouse actuated pan/zoom/tilt/rotate controls	
	Selectable Mesh for drawing speed vs resolution control	
	Continuously zoomable and resizable displays in satellitable	
	window	
	Continuous Z axis display magnitude scaling	
	User enabled backplanes with cursor projections	
Partitioning		Users can subdivide the imager into separate beam measurement regions. All enabled results are computed insid
		of each partition
		The manual aperture is used to define and create rectangular
		partition
		When partitioning is enabled some new results items will be
		enabled
		Centroid measurements between beams in each partition car
		be performed
		Partitioned imagers must have a single origin common to all partitions. All coordinate results are globally referenced to this circle activity.
Statistical Analysis	Performed on all measurement functions with	single origin
	on-screen display	
	Choices of intervals	
	Manual start/stop	
	Time from 1 second to 1000 hours	
	Frames from 2 to 99,999 Measurements reported	
	 Current frame data, Mean, Standard Deviation, Minimum. 	
	 Current frame data, Mean, Standard Deviation, Minimum, Maximum of each calculation performed 	
	Maximum of each calculation performed Controls integrated with beam stability results, scatter and strip chart plots	
-ile types	Maximum of each calculation performed Controls integrated with beam stability results, scatter and strip chart plots Industry Standard HDF5 data and setup file format which are compatible in third party applications such as MatLab and	
ile types	Maximum of each calculation performed Controls integrated with beam stability results, scatter and strip chart plots Industry Standard HDF5 data and setup file format which are compatible in third party applications such as MatLab and Mathmatica	
ile types	Maximum of each calculation performed Controls integrated with beam stability results, scatter and strip chart plots Industry Standard HDF5 data and setup file format which are compatible in third party applications such as MatLab and Mathmatica Math program and Excel compatible ASCII-csv results files	
ile types	Maximum of each calculation performed Controls integrated with beam stability results, scatter and strip chart plots Industry Standard HDF5 data and setup file format which are compatible in third party applications such as MatLab and Mathmatica Math program and Excel compatible ASCII-csv results files Graphics in jpg file format	
ile types	Maximum of each calculation performed Controls integrated with beam stability results, scatter and strip chart plots Industry Standard HDF5 data and setup file format which are compatible in third party applications such as MatLab and Mathmatica Math program and Excel compatible ASCII-csv results files Graphics in jpg file format Legacy file Compatibility with LBA formats	
ile types	Maximum of each calculation performed Controls integrated with beam stability results, scatter and strip chart plots Industry Standard HDF5 data and setup file format which are compatible in third party applications such as MatLab and Mathmatica Math program and Excel compatible ASCII-csv results files Graphics in jpg file format Legacy file Compatibility with LBA formats A user defined single file output that can contain settings, beam	
ile types	Maximum of each calculation performed Controls integrated with beam stability results, scatter and strip chart plots Industry Standard HDF5 data and setup file format which are compatible in third party applications such as MatLab and Mathmatica Math program and Excel compatible ASCII-csv results files Graphics in jpg file format Legacy file Compatibility with LBA formats	
	Maximum of each calculation performed Controls integrated with beam stability results, scatter and strip chart plots Industry Standard HDF5 data and setup file format which are compatible in third party applications such as MatLab and Mathmatica Math program and Excel compatible ASCII-csv results files Graphics in jpg file format Legacy file Compatibility with LBA formats A user defined single file output that can contain settings, beam displays, beam profiles, charts, results, etc. in either .pdf or .xps file formats Images, reports, results, graphs, charts, statistics and setup	
	Maximum of each calculation performed Controls integrated with beam stability results, scatter and strip chart plots Industry Standard HDF5 data and setup file format which are compatible in third party applications such as MatLab and Mathmatica Math program and Excel compatible ASCII-csv results files Graphics in jpg file format Legacy file Compatibility with LBA formats A user defined single file output that can contain settings, beam displays, beam profiles, charts, results, etc. in either .pdf or .xps file formats Images, reports, results, graphs, charts, statistics and setup information	
	Maximum of each calculation performed Controls integrated with beam stability results, scatter and strip chart plots Industry Standard HDF5 data and setup file format which are compatible in third party applications such as MatLab and Mathmatica Math program and Excel compatible ASCII-csv results files Graphics in jpg file format Legacy file Compatibility with LBA formats A user defined single file output that can contain settings, beam displays, beam profiles, charts, results, etc. in either .pdf or .xps file formats Images, reports, results, graphs, charts, statistics and setup information Option to print many frames in a single operation	
File types Printing	Maximum of each calculation performed Controls integrated with beam stability results, scatter and strip chart plots Industry Standard HDF5 data and setup file format which are compatible in third party applications such as MatLab and Math program and Excel compatible ASCII-csv results files Graphics in jpg file format Legacy file Compatibility with LBA formats A user defined single file output that can contain settings, beam displays, beam profiles, charts, results, etc. in either .pdf or .xps file formats Images, reports, results, graphs, charts, statistics and setup information Option to print many frames in a single operation WYSIWYG images	
	Maximum of each calculation performed Controls integrated with beam stability results, scatter and strip chart plots Industry Standard HDF5 data and setup file format which are compatible in third party applications such as MatLab and Mathmatica Math program and Excel compatible ASCII-csv results files Graphics in jpg file format Legacy file Compatibility with LBA formats A user defined single file output that can contain settings, beam displays, beam profiles, charts, results, etc. in either .pdf or .xps file formats Images, reports, results, graphs, charts, statistics and setup information Option to print many frames in a single operation WYSIWYG images Set Maximum/Minimum limits on all calculations and statistics	
Printing	Maximum of each calculation performed Controls integrated with beam stability results, scatter and strip chart plots Industry Standard HDF5 data and setup file format which are compatible in third party applications such as MatLab and Mathmatica Math program and Excel compatible ASCII-csv results files Graphics in jpg file format Legacy file Compatibility with LBA formats A user defined single file output that can contain settings, beam displays, beam profiles, charts, results, etc. in either .pdf or .xps file formats Images, reports, results, graphs, charts, statistics and setup information Option to print many frames in a single operation WYSIWYG images Set Maximum/Minimum limits on all calculations and statistics Red/Green font color indication on result items	
Printing	Maximum of each calculation performed Controls integrated with beam stability results, scatter and strip chart plots Industry Standard HDF5 data and setup file format which are compatible in third party applications such as MatLab and Mathmatica Math program and Excel compatible ASCII-csv results files Graphics in jpg file format Legacy file Compatibility with LBA formats A user defined single file output that can contain settings, beam displays, beam profiles, charts, results, etc. in either .pdf or .xps file formats Images, reports, results, graphs, charts, statistics and setup information Option to print many frames in a single operation WYSIWYG images Set Maximum/Minimum limits on all calculations and statistics Red/Green font color indication on result items Multiple choices for indication of failed parameters, including	
Printing	Maximum of each calculation performed Controls integrated with beam stability results, scatter and strip chart plots Industry Standard HDF5 data and setup file format which are compatible in third party applications such as MatLab and Mathmatica Math program and Excel compatible ASCII-csv results files Graphics in jpg file format Legacy file Compatibility with LBA formats A user defined single file output that can contain settings, beam displays, beam profiles, charts, results, etc. in either .pdf or .xps file formats Images, reports, results, graphs, charts, statistics and setup information Option to print many frames in a single operation WYSIWYG images Set Maximum/Minimum limits on all calculations and statistics Red/Green font color indication on result items	

Features	BeamGage [®] Standard	Upgrade to BeamGage [®] Professional to include: (all features in Standard plus)
Logging	Video Data Logging Formats: HDF5, ASCII-csv	
	Results in ASCII-csv	
	Pictures 2D and 3D in jpg, gif, tiff, bmp, png file formats Charts in ASCII-csv	
	Cursor Data in ASCII-csv	
	Row/Column summed in ASCII-csv	
	Continuous Logging	
	Time Interval Logging	
	Frame Count Logging	
	Periodic Sampling	
	Pass/Fail Sampling	
	Burst Sampling, after a user specified time interval, sample a	
	user specified number of frames	
Exporting	Convert frame buffer data to third party format	
	Export a user specified number of frames from the buffer	
	Export Image Data: ASCII-cvs	
	Export Results: ASCII-csv	
	Export Picture: jpg, gif, tiff, bmp, png file formats supported	
	Export Cursor Data: ASCII-cvs	
	Export Row/Column summed: ASCII-cvs	
	Export Image Data in Aperture	
Automation Interface (.NET)		Automation Interface with examples in LabVIEW, Excel and N VB
		Automate launch and termination of the application
		Automate start, stop, Ultracal, Auto-X and Auto Setup
		Automate the loading of application setups
		Automate control of most camera settings
		Automate a subset of the application features and controls
		Automate the capture of Binary Video Data
		Automate the acquisition of application results
		Automate the acquisition of application Images
ntegrated Help	PDF Operators Manual	
	Context Sensitive (Whats this?) Help	
	Context Sensitive Hints	
signal conditioning for enhanced Accuracy	Spiricon's patented Ultracal enables more accurate beam measurement and display. Ultracal takes a multi- frame average of the baseline offset of each individual pixel to obtain a baseline accurate to approximately 1/8 of a digital count. This baseline offset is subtracted from each frame, pixel by pixel, to obtain a baseline correction accurate to 1/8 digital count. Spiricon's Ultracal method retains numbers less than zero that result from noise when the baseline is subtracted. Retaining fractional and negative numbers in the processed signal can increase the beam width measurement accuracy by up to 10X over conventional baseline subtraction and clip level methods. Spiricon's Ultracal conforms to the best method described in ISO 11146-3:2004	
Frame Averaging	Up to 256 frames can be averaged for a signal-to-noise ratio, S/N, improvement of up to 16X (Noise is averaged up to 1/256th [8 fractional bits]). Data is processed and stored in a 32bit format	
Frame Summing	Up to 256 frames can be summed to pull very weak signals out of the noise	
	Due to the precise nature of Ultracal baseline setting, (i.e., a retention of both positive and negative noise components) summing of frames can be performed without generating a large offset in the baseline	
Convolution (Adjacent Pixel Averaging)	Choice of 5 convolution algorithms for spatial filtering for both display and calculations. Spatial filtering improves the visual S/N	
3eam Maker®	Beam Maker is a new feature that allows the user to model both Laguerre-Gaussian and Hermite-Gaussian laser beams in various modal configurations. With these models you have verification and validation tools that allows not only OSI but also the end user to verify BeamGage's basic beam width measurement algorithms. It can also be used to model laser beams with special input conditions such as signal-to-noise, background offset, and bits per pixel resolution. This allows the user to better understand the accuracy of measurements made the user with a method to validate algorithms against current ISO standards and methods. It can also be used to validate third party algorithms by making the output data available for use in third party applications	

igger, Capture and Synchronization lethods igger, Capture and Synchronization igger, Capture	Control (used by Auto-X and Auto-setup) Desure Control (used by Auto-X and Auto-setup) r Programmable ROI I Binning I Bampling per pixel setting urnal Trigger Input ger Delay be Output be Delay urnal Trigger Probe real Trigger Probe ae are features related to but not generally dependent upon camera design mma Correction rorection Pixel Correction s Applied Option I scale settings ne buffer settings acal ole Auto-X (auto exposure control) orm an Auto-Setup //12/14/16 bits per pixel ct Format or ROI sure S/N ratio ture methods are features related to the application while cifro camera. NOTE: Frame capture rates are determined by y factors and are not guaranteed for any specific operating iguration ger modes W - captures continuously, see Capture Options below	(all features in Standard plus)
amera related features in the applications rigger, Capture and Synchronization lethods rigger, Capture and Synchronization rigger, Capture and Synchr	and by which of these camera features are implemented in software. This section will describe typical camera features sorted in the application k Level Control (used by Ultracal and Auto-X and Auto- p) n Control (used by Auto-X and Auto-setup) osure Control (used by Auto-X and Auto-setup) r Programmable ROI I Binning I Sampling per pixel setting rmal Trigger Input ger Delay be Output be Delay rmal Trigger Probe rnal Trigger Probe se are features related to but not generally dependent upon camera design mana Correction N Correction Pixel Correction s Applied Option I scale settings ne buffer settings ne buffer settings ne buffer settings cal ble Auto-X (auto exposure control) orm an Auto-Setup D/12/14/16 bits per pixel ct Format or ROI usure S/N ratio ture methods are features related to the application while chronization methods relate more to the abilities of the cific camera. NOTE: Frame capture rates are determined by y factors and are not guaranteed for any specific operating figuration ger modes W - captures continuously, see Capture Options below	
igger, Capture and Synchronization lethods rigger, Capture and Synchronization ethods rigger, Capture and Synchronization lethods rigger, Capture and Synchronization ethods rigger, Capture and Synchronization rigger, Capture and Figure rigger, Capture and Figure rigger, Capture and Figure rigger, Captu	software. This section will describe typical camera features sorted in the application k Level Control (used by Ultracal and Auto-X and Auto- p) Control (used by Auto-X and Auto-setup) coure Control (used by Auto-X and Auto-setup) r Programmable ROI I Binning I Sampling per pixel setting small Trigger Input ger Delay be Output be Delay seare features related to but not generally dependent upon camera design ma Correction a Correction Pixel Correction a Correction Pixel Correction s Applied Option I scale settings ne buffer settings acal ole Auto-X (auto exposure control) orm an Auto-Setup //12/14/16 bits per pixel ct Format or ROI ure methods are features related to the application while chronization methods relate more to the abilities of the cific camera. NOTE: Frame capture rates are determined by y factors and are not guaranteed for any specific operating figuration ger modes W - captures continuously, see Capture Options below	
igger, Capture and Synchronization ethods igger, Capture and Synchronization it can it car it car	borted in the application kk Level Control (used by Ultracal and Auto-X and Auto- p) Control (used by Auto-X and Auto-setup) osure Control (used by Auto-X and Auto-setup) r Programmable ROI I Binning I Sampling per pixel setting mrnal Trigger Input ger Delay be Output be Delay mrnal Trigger Probe as are features related to but not generally dependent upon camera design mma Correction a Correction Pixel Correction A correction S Applied Option I scale settings nification settings ne buffer settings acal Die Auto-X (auto exposure control) orm an Auto-Setup D/12/14/16 bits per pixel cct Format or ROI ure methods are features related to the application while chronization methods relate more to the abilities of the cific camera. NOTE: Frame capture rates are determined by y factors and are not guaranteed for any specific operating figuration ger modes W - captures continuously, see Capture Options below	
amera related features in the applications amera related features	k Level Control (used by Ultracal and Auto-X and Auto- p) Control (used by Auto-X and Auto-setup) r Programmable ROI I Binning I Sampling per pixel setting rmal Trigger Input ger Delay be Output be Delay trial Trigger Probe se are features related to but not generally dependent upon camera design ma Correction Pixel Correction S Applied Option I scale settings ne buffer settings ne buffer settings ne buffer settings ne buffer settings norm an Auto-Setup D/12/14/16 bits per pixel ct Format or ROI usure S/N ratio ture methods are features related to the application while chronization methods relate more to the abilities of the cific camera. NOTE: Frame capture rates are determined by y factors and are not guaranteed for any specific operating figuration W - captures continuously, see Capture Options below	
amera related features in the applications The age of t	p) n Control (used by Auto-X and Auto-setup) osure Control (used by Auto-X and Auto-setup) r Programmable ROI I Binning I Sampling per pixel setting rmal Trigger Input ger Delay be Output be Delay rmal Trigger Probe as are features related to but not generally dependent upon camera design nma Correction n Correction Pixel Correction S Applied Option I scale settings ne buffer settings ne buffer settings acal ble Auto-X (auto exposure control) orm an Auto-Setup D/12/14/16 bits per pixel cct Format or ROI Isure S/N ratio ture methods are features related to the application while cific camera. NOTE: Frame capture rates are determined by y factors and are not guaranteed for any specific operating figuration W - captures continuously, see Capture Options below	
amera related features in the applications amera related features in the applications and the second	Control (used by Auto-X and Auto-setup) Desure Control (used by Auto-X and Auto-setup) r Programmable ROI I Binning I Bampling per pixel setting urnal Trigger Input ger Delay be Output be Delay urnal Trigger Probe real Trigger Probe ae are features related to but not generally dependent upon camera design mma Correction rorection Pixel Correction s Applied Option I scale settings ne buffer settings acal ole Auto-X (auto exposure control) orm an Auto-Setup //12/14/16 bits per pixel ct Format or ROI sure S/N ratio ture methods are features related to the application while cifro camera. NOTE: Frame capture rates are determined by y factors and are not guaranteed for any specific operating iguration ger modes W - captures continuously, see Capture Options below	
amera related features in the applications The and a strong the offer the applications and a strong the applications and a strong the application and a strong the application and a strong the application application and a strong the application a	osure Control (used by Auto-X and Auto-setup) r Programmable ROI I Binning I Sampling per pixel setting rmal Trigger Input ger Delay be Output be Delay maral Trigger Probe real Trigger Probe as are features related to but not generally dependent upon camera design mma Correction a Correction Pixel Correction A Correction S Applied Option I scale settings nification settings ne buffer settings accal ole Auto-X (auto exposure control) orm an Auto-Setup D/12/14/16 bits per pixel ct Format or ROI sure S/N ratio ture methods are features related to the application while chronization methods relate more to the abilities of the cific camera. NOTE: Frame capture rates are determined by y factors and are not guaranteed for any specific operating figuration B continuously, see Capture Options below	
gger, Capture and Synchronization ethods gger, Capture and Synchronization gger, Ca	r Programmable ROI I Binning I Sampling per pixel setting rmal Trigger Input ger Delay be Output be Delay mal Trigger Probe se are features related to but not generally dependent upon camera design mma Correction a Correction n Correction Pixel Correction S Applied Option I scale settings inification settings ne buffer settings acal ole Auto-X (auto exposure control) orm an Auto-Setup D/12/14/16 bits per pixel cct Format or ROI usure S/N ratio ture methods are features related to the application while cific camera. NOTE: Frame capture rates are determined by y factors and are not guaranteed for any specific operating iguration ger modes W - captures continuously, see Capture Options below	
amera related features in the applications amera related features	I Binning I Sampling per pixel setting irrnal Trigger Input ger Delay be Output be Delay irrnal Trigger Probe se are features related to but not generally dependent upon camera design ma Correction Pixel Correction Correction Pixel Correction s Applied Option I scale settings inification settings ne buffer settings cal ble Auto-X (auto exposure control) orm an Auto-Setup D/12/14/16 bits per pixel ct Format or ROI usure S/N ratio ture methods are features related to the application while chronization methods relate more to the abilities of the cific camera. NOTE: Frame capture rates are determined by y factors and are not guaranteed for any specific operating iguration ger modes N - captures continuously, see Capture Options below	
amera related features in the applications amera related features in the applications The dist amera related features in the applications The dist Bad Lens Pixe Mag Fran Ultre Enal Perfinance Stro Sele Mea Sele Mea Cap Cap Cap Cite Mea Stro Cap Cap Cap Cap Cap Cap Cap Cap	I Sampling per pixel setting mral Trigger Input ger Delay be Output be Delay mral Trigger Probe rnal Trigger Probe se are features related to but not generally dependent upon camera design mra Correction Correction Pixel Correction S Applied Option I scale settings inification settings ne buffer settings acal ble Auto-X (auto exposure control) orm an Auto-Setup D/12/14/16 bits per pixel act Format or ROI usure S/N ratio ture methods are features related to the application while chronization methods relate more to the abilities of the cific camera. NOTE: Frame capture rates are determined by y factors and are not guaranteed for any specific operating figuration ger modes W - captures continuously, see Capture Options below	
amera related features in the applications amera related features in the applications add geer, Capture and Synchronization ethods gger, Capture and Synchronization ethods	per pixel setting rmal Trigger Input ger Delay be Output be Delay rmal Trigger Probe rmal Trigger Probe rmal Trigger Probe se are features related to but not generally dependent upon camera design nma Correction 1 correction Pixel Correction Pixel Correction 1 scale settings ne buffer settings acal ble Auto-X (auto exposure control) orm an Auto-Setup //12/14/16 bits per pixel cct Format or ROI sure S/N ratio ture methods are features related to the application while chronization methods relate more to the abilities of the bific camera. NOTE: Frame capture rates are determined by y factors and are not guaranteed for any specific operating figuration ger modes N - captures continuously, see Capture Options below	
amera related features in the applications amera related features in the applications Bad Lens Pixe Mag Fran Ultra Enal Perfi 8/10 Selea Mea Perfi 8/10 Selea Trigg • CV • Tri ca • Stri • CV • Tri ca • Stri • CV • Tri • CV • CV	rmal Trigger Input ger Delay be Output be Delay irmal Trigger Probe rmal Trigger Probe as are features related to but not generally dependent upon camera design nma Correction a Correction Pixel Correction I scale settings ne buffer settings acal ole Auto-X (auto exposure control) orm an Auto-Setup D/12/14/16 bits per pixel act Format or ROI usure S/N ratio ture methods are features related to the application while chronization methods relate more to the abilities of the cific camera. NOTE: Frame capture rates are determined by y factors and are not guaranteed for any specific operating iguration ger modes W - captures continuously, see Capture Options below	
amera related features in the applications The final linter Inter Inter Inter Inter Inter Gam Gain Gain Gain Bad Lens Pixe Mag Fran Ultra Enal Perfusion Stroto Str	ger Delay be Output be Delay irrnal Trigger Probe se are features related to but not generally dependent upon camera design irrna Correction o Correction Pixel Correction S Applied Option I scale settings inification settings ne buffer settings acal ole Auto-X (auto exposure control) orm an Auto-Setup D/12/14/16 bits per pixel cct Format or ROI isure S/N ratio ture methods are features related to the application while chronization methods relate more to the abilities of the cific camera. NOTE: Frame capture rates are determined by y factors and are not guaranteed for any specific operating iguration ger modes W - captures continuously, see Capture Options below	
amera related features in the applications The interval of the applications The applications The applications The applications The applications and a constrained of the applications and a constrained of the application of	be Output be Delay mal Trigger Probe mal Trigger Probe se are features related to but not generally dependent upon camera design ma Correction Network Correction S Applied Option I scale settings inification settings ne buffer settings acal ole Auto-X (auto exposure control) orm an Auto-Setup D/12/14/16 bits per pixel act Format or ROI usure S/N ratio ture methods are features related to the application while chronization methods relate more to the abilities of the cific camera. NOTE: Frame capture rates are determined by y factors and are not guaranteed for any specific operating iguration ger modes W - captures continuously, see Capture Options below	
amera related features in the applications amera related features in the applications amera related features in the applications Gair Bad Lens Pixe Mag Fran Ultra Enal Perf 8/10 Sele Mea 200 Cap Cap Mea Cap Cap Cap Cap Cap Cap Cap Ca	be Delay rmal Trigger Probe se are features related to but not generally dependent upon samera design ma Correction Pixel Correction Pixel Correction Pixel Correction s Applied Option I scale settings inification settings ne buffer settings acal ble Auto-X (auto exposure control) orm an Auto-Setup D/12/14/16 bits per pixel act Format or ROI issure S/N ratio ture methods are features related to the application while chronization methods relate more to the abilities of the cific camera. NOTE: Frame capture rates are determined by y factors and are not guaranteed for any specific operating figuration ger modes W - captures continuously, see Capture Options below	
amera related features in the applications The three the Gam	rnal Trigger Probe rnal Trigger Probe se are features related to but not generally dependent upon camera design ma Correction Pixel Correction a Correction Pixel Correction a call Settings inification settings ne buffer settings acal ble Auto-X (auto exposure control) orm an Auto-Setup //12/14/16 bits per pixel cct Format or ROI isure S/N ratio ture methods are features related to the application while chronization methods relate more to the abilities of the bific camera. NOTE: Frame capture rates are determined by y factors and are not guaranteed for any specific operating iguration ger modes W - captures continuously, see Capture Options below	
amera related features in the applications The Gam Gair Bad Lens Pixe Mag Fran Ultra Enal Ultra Enal Sele Mea gger, Capture and Synchronization ethods Cap Synchronization frigg C CV for Ca Cap Cap Cap Cap Cap Cap Cap Cap Cap	nal Trigger Probe se are features related to but not generally dependent upon camera design mma Correction Ocorrection Pixel Correction I scale settings infication settings ne buffer settings acal ole Auto-X (auto exposure control) orm an Auto-Setup //12/14/16 bits per pixel ct Format or ROI isure S/N ratio ture methods are features related to the application while chronization methods relate more to the abilities of the cific camera. NOTE: Frame capture rates are determined by y factors and are not guaranteed for any specific operating iguration ger modes W - captures continuously, see Capture Options below	
amera related features in the applications Theorem Gam Gain Gain Gain Gain Gain Gain Gain Gain	se are features related to but not generally dependent upon camera design in a Correction o Correction Pixel Correction I scale settings inification settings ne buffer settings acal ole Auto-X (auto exposure control) orm an Auto-Setup 0/12/14/16 bits per pixel act Format or ROI issure S/N ratio ture methods are features related to the application while chronization methods relate more to the abilities of the cific camera. NOTE: Frame capture rates are determined by y factors and are not guaranteed for any specific operating iguration ger modes N - captures continuously, see Capture Options below	
gger, Capture and Synchronization gger, Capture and Synchronization athods Cap Cap Cap Cap Cap Cap Cap Cap	camera design ma Correction a Correction Pixel Correction I scale settings inification settings ne buffer settings acal ole Auto-X (auto exposure control) orm an Auto-Setup D/12/14/16 bits per pixel ct Format or ROI isure S/N ratio ture methods are features related to the application while chronization methods relate more to the abilities of the cific camera. NOTE: Frame capture rates are determined by y factors and are not guaranteed for any specific operating iguration ger modes N - captures continuously, see Capture Options below	
Gam Gai Bad Lens Pixe Mag Fran Ultrz Enal Perf 8/10 Sele Mea gger, Capture and Synchronization sthods Cap Sync Sync Sync Sync Sync Sync Sync Sync	nma Correction Correction Pixel Correction s Applied Option I scale settings inification settings ne buffer settings acal ble Auto-X (auto exposure control) orm an Auto-Setup D/12/14/16 bits per pixel ct Format or ROI isure S/N ratio ture methods are features related to the application while chronization methods relate more to the abilities of the cific camera. NOTE: Frame capture rates are determined by y factors and are not guaranteed for any specific operating iguration ger modes N - captures continuously, see Capture Options below	
gger, Capture and Synchronization ethods gger, Capture and Synchronization ethods gger, Capture and Synchronization ethods gger, Capture and Synchronization cap ethods gger, Capture and Synchronization sethods gger, Capture and Synchronization cap e Ct e Ct e Ct e Ct e Ct e Ct e Ct e Ct	a Correction Pixel Correction s Applied Option I scale settings inification settings acal ble Auto-X (auto exposure control) orm an Auto-Setup //12/14/16 bits per pixel ct Format or ROI isure S/N ratio ture methods are features related to the application while chronization methods relate more to the abilities of the chronization methods relate more to the abilities of the chronization methods relate more to the abilities of the chronization are not guaranteed for any specific operating iguration ger modes N - captures continuously, see Capture Options below	
gger, Capture and Synchronization thods gger, Capture and Synchronization thods	Pixel Correction s Applied Option I scale settings ne buffer settings cal ole Auto-X (auto exposure control) orm an Auto-Setup //12/14/16 bits per pixel ct Format or ROI usure S/N ratio ture methods are features related to the application while chronization methods relate more to the abilities of the cific camera. NOTE: Frame capture rates are determined by y factors and are not guaranteed for any specific operating iguration ger modes N - captures continuously, see Capture Options below	
gger, Capture and Synchronization sthods cap thods cap cap cap cap cap cap cap cap cap cap	s Applied Option I scale settings Inification settings ne buffer settings acal ole Auto-X (auto exposure control) orm an Auto-Setup J/12/14/16 bits per pixel ct Format or ROI Isure S/N ratio ture methods are features related to the application while chronization methods relate more to the abilities of the cific camera. NOTE: Frame capture rates are determined by y factors and are not guaranteed for any specific operating iguration ger modes N - captures continuously, see Capture Options below	
Pixe Mag Fran Ultra Enal Perfi 8/10 Sele Mea gger, Capture and Synchronization sthods Cap • CV • Tri ca • Stu cap • CV • Tri ca • Stu cap • CV • Tri ca • Stu cap • CV • Tri ca • Stu · CAP • CAP • CV • Tri · CAP • CV • Tri · CAP • CV • CV • Tri · CAP • CV • CV • Tri · CAP • CV • CAP • CV • CV • CAP • CV • CV • CV • CAP • CV • CV • CV • CV • CV • CV • CAP • CV • CV • CV • CV • CV • CV • CV • CV	I scale settings inification settings ne buffer settings acal ole Auto-X (auto exposure control) orm an Auto-Setup)/12/14/16 bits per pixel ct Format or ROI isure S/N ratio ture methods are features related to the application while chronization methods relate more to the abilities of the cific camera. NOTE: Frame capture rates are determined by y factors and are not guaranteed for any specific operating iguration ger modes N - captures continuously, see Capture Options below	
gger, Capture and Synchronization sthods gger, Capture and Synchronization sthods	Inification settings ne buffer settings acal ble Auto-X (auto exposure control) orm an Auto-Setup 0/12/14/16 bits per pixel ct Format or ROI isure S/N ratio ture methods are features related to the application while chronization methods relate more to the abilities of the cific camera. NOTE: Frame capture rates are determined by y factors and are not guaranteed for any specific operating figuration ger modes N - captures continuously, see Capture Options below	
igger, Capture and Synchronization ethods	ne buffer settings acal ole Auto-X (auto exposure control) orm an Auto-Setup 0/12/14/16 bits per pixel ct Format or ROI sure S/N ratio ture methods are features related to the application while chronization methods relate more to the abilities of the chronization are not guaranteed for any specific operating iguration ger modes W - captures continuously, see Capture Options below	
gger, Capture and Synchronization athods gger, Capture and Synchronization athods Gap Cap Sync Sync Cap Cap Cap Cap Cap Cap Cap Cap	acal ble Auto-X (auto exposure control) orm an Auto-Setup)/12/14/16 bits per pixel ct Format or ROI isure S/N ratio ture methods are features related to the application while chronization methods relate more to the abilities of the chronization methods relate more to the abilities of the chronization methods relate more to the abilities of the chronization are not guaranteed for any specific operating iguration ger modes W - captures continuously, see Capture Options below	
gger, Capture and Synchronization sethods	ble Auto-X (auto exposure control) orm an Auto-Setup //12/14/16 bits per pixel ct Format or ROI issure S/N ratio ture methods are features related to the application while chronization methods relate more to the abilities of the cific camera. NOTE: Frame capture rates are determined by y factors and are not guaranteed for any specific operating iguration ger modes N - captures continuously, see Capture Options below	
gger, Capture and Synchronization ethods gger, Capture and Synchronization ethods	orm an Auto-Setup //12/14/16 bits per pixel ct Format or ROI isure S/N ratio ture methods are features related to the application while chronization methods relate more to the abilities of the cific camera. NOTE: Frame capture rates are determined by y factors and are not guaranteed for any specific operating iguration ger modes N - captures continuously, see Capture Options below	
8/10 Sele Mea gger, Capture and Synchronization ethods Cap O Cite Trigg Cap Cap Cap Cap Cap Cap Cap Cap Cap Cap	0/12/14/16 bits per pixel ct Format or ROI sure S/N ratio ture methods are features related to the application while chronization methods relate more to the abilities of the cific camera. NOTE: Frame capture rates are determined by y factors and are not guaranteed for any specific operating iguration ger modes N - captures continuously, see Capture Options below	
gger, Capture and Synchronization athods Cap Synchronization Cap Synchronization Trigg • CV • Tri ca • Stri ca • Stri stri ca • Stri stri stri stri stri stri stri stri s	ct Format or ROI isure S/N ratio ture methods are features related to the application while chronization methods relate more to the abilities of the cific camera. NOTE: Frame capture rates are determined by y factors and are not guaranteed for any specific operating iguration ger modes W - captures continuously, see Capture Options below	
Igger, Capture and Synchronization ethods Cap Sync Sync Con Trigg CV Tri ca St Cap St Cap Cap Cap Cap Cap Cap Cap Cap Cap Cap	sure S/N ratio ture methods are features related to the application while chronization methods relate more to the abilities of the cific camera. NOTE: Frame capture rates are determined by y factors and are not guaranteed for any specific operating iguration ger modes W - captures continuously, see Capture Options below	
gger, Capture and Synchronization spectro conf	ture methods are features related to the application while chronization methods relate more to the abilities of the clific camera. NOTE: Frame capture rates are determined by by factors and are not guaranteed for any specific operating figuration ger modes W - captures continuously, see Capture Options below	
ethods Sync spec man conf CV • Tri ca • St ca • Vic ca • Vic ca • Vic ca • CV • Tri fie • CV • Tri • CV • CV • Tri • CV • CV • CV • Tri • CV • CV • CV • CV • CV • CV • CV • CV	chronization methods relate more to the abilities of the cific camera. NOTE: Frame capture rates are determined by y factors and are not guaranteed for any specific operating iguration ger modes W - captures continuously, see Capture Options below	
ethods Sync spec man conf CV • Tri ca • St ca • Vic ca • Vic ca • Vic ca • CV • Tri fie • CV • Tri • CV • CV • Tri • CV • CV • CV • Tri • CV • CV • CV • CV • CV • CV • CV • CV	chronization methods relate more to the abilities of the cific camera. NOTE: Frame capture rates are determined by y factors and are not guaranteed for any specific operating iguration ger modes W - captures continuously, see Capture Options below	
man conf Trigg • CV • Tri ca • Stt ca • Stt ca Cap • Vic ca Cap • Cc dif wi fle • Re to	y factors and are not guaranteed for any specific operating iguration ger modes <i>V</i> - captures continuously, see Capture Options below	
conf Trigg • CV • Tri ca • Str ca • Vic ca Cap • Ca dif wi fle • Re to	iguration ger modes V - captures continuously, see Capture Options below	
Trigg • CV • Tri ca • St ca • Vic ca • Vic ca Cap • Ca dif Wi fle • Re to	or modes V - captures continuously, see Capture Options below	
• OV • Tri ca • Stu ca • Vic ca Cap • Ca dif wi fle • Re to	W - captures continuously, see Capture Options below	
 Tricca Stricca Vicca Vicca Cap Ca Ca dif wi fle Re to 		
ca • Str ca • Vic ca Cap • Ca dif wi fle • Re to	an an In fuence lesson. Trianent pulses supplied to the	
 Stica Via Cap Ca dif with fle Re to 	gger-In from laser: Trigger pulses supplied to the	
ca • Vic _caa Cap • Ca dif wi fle • Re to	imera	
 Vic ca Cap Ca dif wi fle Re to 	robe-Out to laser: Strobe pulses output from the	
ca Cap • Ca dif wi fle • Re to	imera	
Cap • Ca dif wi fle • Re to	deo Trigger: Frame captured and displayed only when the	
• Ca dif wi fle • Re to	mera sees a signal greater than a user set level	
dif wi fle ● Re to	ture options	
wi fle ● Re to	apture options are redefined and are approached in a	
fle • Re to	ferent manner than older products. The items listed below	
• Re to	Il allow for all of the previous methods but with more	
to	xibility than ever before	
	besults Priority: Results priority will slow the capture rate be in sync with the computational results and display	
uL.	odates	
• Fra	ame Priority: Frame priority will slow results and display	
	bolating to insure that frames are collected and stored in	
	e frame buffer as fast as possible (replaces block mode)	
	op After: Will collect a set number of frames and then	
	pp (replaces Single-Shot mode)	
	riodic: Will collect frame at a programmed periodic rate	
	riodic Burst: Will collect frames in a Burst at	
	ogrammed periodic rates	
	ost processing is still available but is done via a different	
m	echanism and is limited to only data file sources	
	o playback, post processing and post analysis	
Use	r customizable playback rates	
	o file quick pan/search controls	
	ble video file playback looping with sub-selection looping	
	back Video produced by logging	
	ost all measurements can be performed on video files	
	computer running Windows 7 (64) and Windows 10 Laptop	
	esktop	
	all cameras run in all Microsoft U.S versions, see camera	
	all cameras run in all Microsoft OS versions, see camera ion for specifics	
	ion for specifics	
	ion for specifics Pentium style processor, dual core recommended	Minimum 3-4GB RAM
	ion for specifics Pentium style processor, dual core recommended mum 2GB RAM (4GB required for L11059 camera)	Minimum 3-4GB RAM
Harc expe	ion for specifics Pentium style processor, dual core recommended	Minimum 3-4GB RAM

3.3.4 Cameras for BeamGage®

Camera Compatibility

For lasers between 190-1100nm wavelengths, BeamGage interfaces to both silicon CCD and CMOS USB cameras. For applications between 1440-1605nm, BeamGage supports cost effective phosphor coated CCD cameras. For demanding applications between 900-1700nm, BeamGage supports an InGaAs camera. And for applications in the ultraviolet, 13-355nm, or far infrared or Terahertz range, 1.06-3000nm, BeamGage supports Spiricon's Pyrocam™, pyroelectric array cameras.

190-1100nm*

Model	SP932U
Application	1/1.8" format, slim profile, wide dynamic range, CW & pulsed lasers, adjustable ROI
Beam sizes	34.5µm - 5.3mm
Number of effective pixels	2048 x 1536
CMOS recess	4.5±0.11mm
PC interface	USB 3.0
Page in the catalog	194

Model	SP920s
Application	1/1.8" format, slim profile, wide dynamic range, CW & pulsed lasers, adjustable ROI
Beam sizes	44µm - 5.3mm
Number of effective pixels	1624 x 1224
CCD recess	4.5mm
PC interface	USB 3.0
Page in the catalog	195

3.3.4

Model	LT665	L11059
Application	12.5mm x 10mm, 1" format for large beams, CW & pulsed lasers, adjustable ROI	36mm x 24mm, 35mm format for large beams, CW & pulsed lasers, adjustable ROI
Beam sizes	46µm - 9.9mm	90µm - 24mm
Number of effective pixels	2752 x 2192	4008 x 2672
CCD recess	17.5mm	17.3mm
PC interface	USB 3.0	USB 2.0
Page in the catalog	196	196

Model	SP920s-1550	LT665-1550
Application	NIR wavelengths, 1/1.8" format, adjustable ROI and binning	12.5mm x 10mm, 1" format for large beams, CW & pulsed lasers, adjustable ROI
Beam sizes	600µm - 5.3mm	600µm - 9.9mm
Number of effective pixels	1624 x 1224	2752 x 2192
CCD recess	4.5 mm	17.5 mm
PC interface	USB 3.0	USB 3.0
Page in the catalog	198	198

900-1700nm

Model	SP1203	SP1201	XEVA 100Hz
Application	High resolution InGaAS performance, NIR wavelengths	InGaAS performance, NIR wavelengths	InGaAS performance, NIR wavelengths
Beam sizes	150µm-7.4mm	300µm - 7.4mm	300µm - 7.4mm
Number of effective pixels	640 x 512 (VGA)	320 x 256 (QVGA)	320 x 256 (QVGA)
CCD recess	C-mount, (Optional)	C-mount, (Optional)	C-mount, (Optional)
PC interface	GigE	GigE	USB 2.0
Page in the catalog	199	199	199

13-355nm & 1.06-3000µm

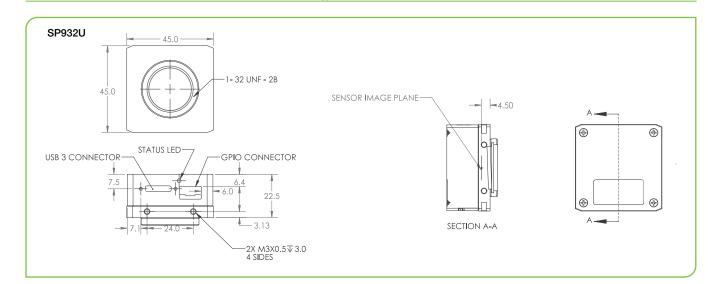
Model	Pyrocam™ IIIHR	Pyrocam™ IV
Application	UV & Far IR Only commercial array to view Terahertz	UV & Far IR Only commercial array to view Terahertz
Beam sizes	1600µm-12.7mm	1600µm-25.4mm
Number of effective pixels	160 x 160	320 x 320
CCD recess	15.15mm	19.7mm
PC interface	GigE	GigE
Page in the catalog	204	204

3.3.4.1.1 USB Silicon CMOS Camera

SP932U high resolution

Features

- Specially optimized for NIR and Nd:YAG regions via "Blooming Correction" algorithm
- 1/1.8" format CMOS global shutter imager
- Interface: USB3
- High Resolution 3.45µm pixel size
- 72dB true dynamic resolution, high bitrate
- No Smearing



Model	SP932U				
Format	1/1.8"				
Wavelengths (1)	190-1100nm				
Active area	7.06mm x 5.3mm				
Beam sizes	34.5µm - 5.3mm				
Pixel spacing	3.45µm x 3.45µm				
Number of effective pixels	2048 x 1536				
Dynamic range	72 dB				
Linearity with power	<1%				
Accuracy of beam width	±2%				
Frame rates in 12 bit mode (2)	24 fps at full resolution				
Exposure	25µs to 2000ms				
Gain control	1.46 dB to 256 dB				
Trigger	Hardware/Software Trigger & Strobe Out				
Photodiode trigger (Optional) (3)	Si response: SP90408				
Saturation intensity (4)	32µW/cm² at 633nm, 500µW/cm² at 1064nm				
Lowest measurable signal (4)	0.2nW/cm ²				
Damage threshold (5)	50W/cm ² / 1J/cm ² for < 100ns pulse width				
Ambient operating temperature	0 - 50° C				
Dimensions	45 mm x 45 mm x 22.5 mm				
Imager recess	4.5±0.11mm				
Image quality at 1064nm	Pulsed with trigger sync - excellent Pulsed with video trigger - good CW - excellent				
Operation mode	CMOS, Global shutter				
PC interface	USB 3.0				
OS supported	Windows 10 (64), BeamGage 6.17 required				
Compliance	CE, UKCA, China RoHS				
Ordering Information					
Supported software	Item P/N				
BeamGage Professional	BGP-USB3-SP932U SP90607 ⁽⁶⁾				
BeamGage Standard	BGS-USB3-SP932U SP90606 ⁽⁶⁾				
Notes:	(1) The camera's natural response is from 300nm through 1100nm. At wavelengths above 1000 nm and Be	eamGage "Blooming correction" function needs			

(1) The camera's natural response is from 300nm through 1100nm. At wavelengths above 1000 nm and BeamGage "Biooming correction" function needs to be activated. To measure effectively below 300nm, please make use of Ophir UV converter, otherwise the sensitivity is too low and the measurement accuracy may degrade. Without UV converter, long term intensive irradiation at UV wavelengths, may cause permanent damage to the imager due to UV ablation.

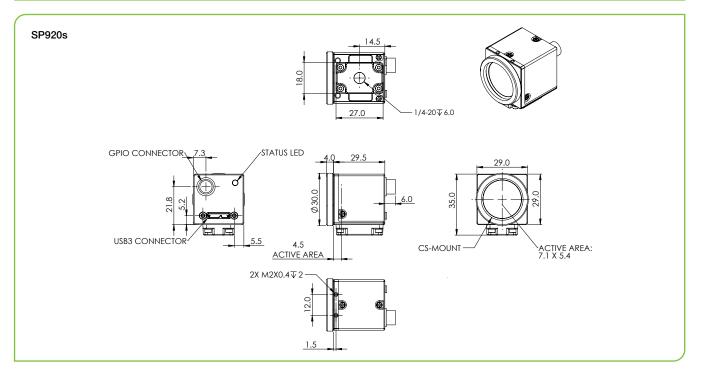
UV ablation.
(2) Dependent on PC processor and graphics card performance. Frame rate is reduced when the Blooming Correction algorithm is active and can be increased using smaller aperture or the binning option.
(3) For more information please see "Optical Camera Trigger" catalog page
(4) Camera set to full resolution at maximum frame rate at 633m and 1064nm wavelength. Camera set to minimum gain and 1ms exposure time for saturation test and 35ms exposure time for the lowest signal test.
(5) This is the damage threshold of the filter glass. Assuming all filters are mounted with ND1 (red housing) filter in the front. Distortion of the beam may occur with average power densities of 5W/cm² for beam size 5mm, 10W/cm² for 2mm beam, and >30W/cm² for 1mm beam.
(6) Comes with USB 3.0 cable, Trigger cable and 3 ND filters.

3.3.4.1.2 USB Silicon CCD Cameras

SP920s high resolution

Features

- 1/1.8" imager format
- USB Interface
- Small camera size
- >60dB true dynamic resolution


Ophir[®]

SP920s

Model	SP920s			
Format	1/1.8"			
Wavelengths (1)	190 - 1100nm			
Active area	7.1mm x 5.3mm			
Beam sizes	44µm - 5.3mm			
Pixel spacing	4.4µm			
Number of effective pixels	1624 x 1224			
Dynamic range	60 dB			
Linearity with power	±1%			
Accuracy of beam width	±2%			
Frame rates in 12 bit mode (2)	15 fps at full resolution			
Shutter duration	70µs to multiple frames			
Gain control	0 dB to 24 dB			
Trigger	Hardware/Software trigger & strobe out			
Photodiode trigger (Optional) (3)	Si response: SP90408			
Saturation intensity (4)	32µW/cm ²			
Lowest measurable signal (4)	1nW/cm ²			
Damage threshold (5)	50W/cm ² / 1J/cm ² with all filters installed for < 1	100ns pulse width		
Ambient operating temperature	0 - 50° C			
Dimensions	29 mm x 29 mm x 29.5 mm			
CCD recess	4.5 mm			
Image quality at 1064nm	Pulsed with trigger sync - excellent Pulsed with video trigger - good CW - good			
Operation mode	Interline transfer C			
PC interface	USB 3.0			
OS supported	Windows 7 (64) and Windows 10			
Compliance	CE, UKCA, China RoHS			
Ordering Information				
Supported software	Item	P/N		
BeamGage Professional	BGP-USB3-SP920s	SP90550 ⁽⁶⁾		
BeamGage Standard	BGS-USB3-SP920s	SP90549 ⁽⁶⁾		
Notes:		100nm. To measure effectively below 340nm, please make us t accuracy may degrade. Without UV converter, long term inter-		

Otherwise the sensitivity is too low and the measurement accuracy may degrade. Without UV converter, long term intensive irradiation at UV wavelengths, may cause permanent damage to the imager due to UV ablation.
(2) Highly dependent on PC processor and graphics adapter performance.
(3) For more information please see "Optical Camera Trigger" catalog page
(4) Camera set to full resolution at maximum frame rate at 633mm CW wavelength. Camera set to minimum useful gain and 1ms exposure time for saturation test and maximum useful gain and 35ms exposure time for lowest signal test.
(5) This is the damage threshold of the filter glass of the filters. Assuming all filters mounted with ND1 (red housing) filter in the front. Distortion of the beam may occur with average power densities of 5W/cm² for 2mam 300 / cm² for 2mm beam and >30W/cm² for 1mm beam.
(6) Comes with USB 3.0 cable, Trigger cable and 3 ND filters.

3.3.4.1.2

3.3.4.1.3 Large Format USB Silicon CCD Cameras

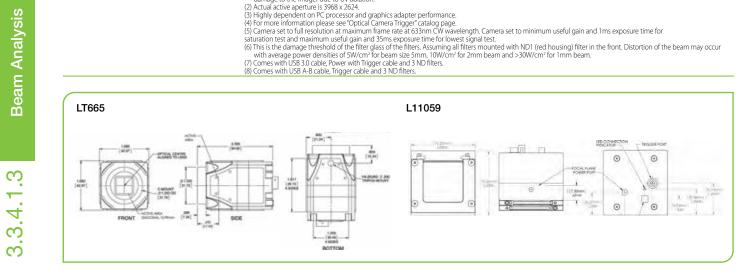
LT665

Features

- Large 1" imager format
- High resolution
- High speed
- 54dB true dynamic resolution

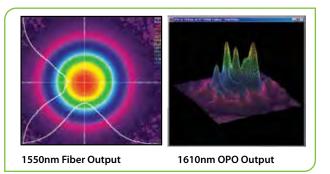
Features

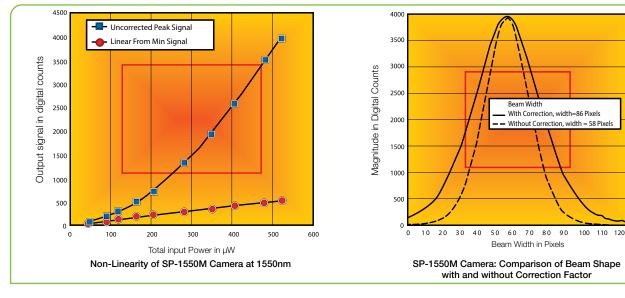
- 35mm x 24mm imager format
- Highest resolution
- Programmable high speed electronic shutter
- 59dB true dynamic resolution



Comes with 3 ND filters: (ND1, ND2, ND3) ND3 mounted in camera

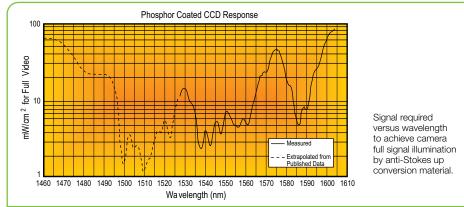
Model	LT665		L11059		
Format	1"		35mm		
Wavelengths (1)	190 - 1100nm		190 - 1100nm		
Active area	12.5mm x 10mm		35mm x 24mm		
Beam sizes	46µm - 9.9mm		90µm - 24mm		
Pixel spacing	4.54µm x 4.54µm		9.0µm x 9.0µm		
Number of effective pixels	2752 x 2192		4008 x 2672 ⁽²⁾		
Dynamic range	54 dB		59 dB		
Linearity with power	±1%		±1%		
Accuracy of beam width	±2%		±2%		
Frame rates in 12 bit mode (3)	27 fps at full resolution		3.1 fps at full resolution		
Shutter duration	31us to multiple frames		10us to multiple frame		
Gain control	0.8 dB to 56 dB		0.8 dB to 56 dB		
Trigger	Hardware/Software trigge	er & strobe out	Supports both trigger & strobe out		
Photodiode trigger (Optional) (4)	Si response: SP90408		Si response: SP90408		
Saturation intensity (5)	14µW/cm ²		160µW/cm ²		
Lowest measurable signal (5)	0.3nW/cm ²		0.17nW/cm ²		
Damage threshold (6)	50W/cm ² / 1J/cm ² with a width	all filters installed for < 100ns pulse	e 0.15mW/cm ²		
Ambient operating temperature	0 - 50° C. Recommende	d to connect to heat sink	0 - 50° C		
Dimensions	43mm x 43mm x 65mm		83 mm x 76mm x 128mm		
CCD recess	17.5mm		17.3mm		
Image quality at 1064nm	Pulsed with trigger sync - excellent Pulsed with video trigger - good CW - good		Pulsed with trigger sync - excellent Pulsed with video trigger - good CW - good		
Operation mode	Quad Tap interline transfe	er CCD	U U		
PC interface	USB 3.0		USB 2.0		
OS supported	Windows 7 (64) and Wind	dows 10			
Compliance	CE, UKCA, China RoHS				
Ordering Information					
Supported software	Item	P/N	Item	P/N	
BeamGage Professional	BGP-USB3-LT665	SP90378 ⁽⁷⁾	BGP-USB-L11059	SP90320 ⁽⁸⁾	
BeamGage Standard	BGS-USB3-LT665	SP90377 (7)	N/A	N/A	
Accessories					
LBS-300 to L11059 Adapter					SP90571
LBS-400 to L11059 Adapter		s from 340nm through 1100nm. To measure effe			SP90439


sensitivity is too low and the measurement accuracy may degrade. Without UV converter, long term intensive irradiation at UV wavelengths, may cause permanent damage to the imager due to UV ablation.
(2) Actual active aperture is 3968 x 2624.
(3) Highly dependent on PC processor and graphics adapter performance.
(4) For more information please see "Optical Camera Tingger" catalog page.
(5) Camera set to full resolution at maximum frame rate at 633nm CW wavelength. Camera set to minimum useful gain and 1ms exposure time for saturation test and maximum useful gain and 35ms exposure time for lowerst signal test.
(6) This is the damage threshold of the filter glass of the filters, Assuming all filters mounted with ND1 (red housing) filter in the front. Distortion of the beam may occur with average power densities of SW/cm² for beam size 5mm, 10W/cm² for 2mm beam and >30W/cm² for 1mm beam.
(7) Comes with USB A-B cable, Trigger cable and 3 ND filters.



Phosphor Coating Technology

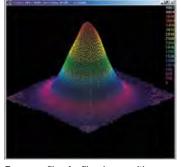
The up-conversion from NIR to visible light in the 1550 series cameras is nonlinear. The anti-Stokes phosphor coating produces visible photons at a rate roughly the square of the input signal. This is shown dramatically where the camera total output increases dramatically faster than a linear output shown in the bottom line. The CCD camera saturation in the center of a beam, the up-converted visible signal drops as the square of the input signal. Thus the lower signal wings of a beam are suppressed, resulting in the appearance and measurement of a beam width much smaller than actual.



This illustration is a comparison of the cross-section of a beam with and without correction. As seen, the real width of the beam is much greater than would be observed without correction.

Wavelength Response

The anti-Stokes up-conversion efficiency is very wavelength dependent. This graph shows the typical spectral response curve of a new, high response coating. As seen, we have calibrated the response from 1527nm to 1605nm. We have extrapolated the shorter wavelength region by comparing our measured response to data published over the entire range.



Phosphor Coated Cameras with Spiricon's BeamGage software

Spiricon's engineers have carefully measured the non-linearity of the signal generated by the Phosphor Coated series cameras. The software in the BeamGage incorporates an algorithm to correct for the non-linearity. This illustration shows the linearity obtained, showing in the top line that the low level signals drop linearly, rather than at the square of the input, seen in the lower line.

The two photos show the uncorrected and corrected camera beam shape in 3D. See the BeamGage section for additional information on the beam analyzer.

🥥 Ophir

Beam profile of a fiber beam with non-linearity correction.

Beam profile of a fiber beam without non-linearity correction.

3.3.4.2.1 Phosphor Coated CCD Cameras For NIR Response

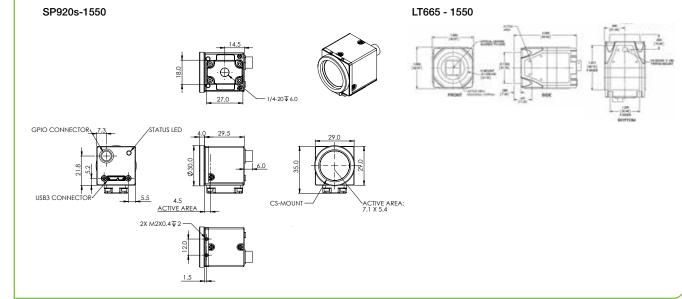
Features

- 1440-1605nm Wavelengths
- NIR Telecom mode field analysis
- NIR Laser beam analysis

Available Models

- USB models: SP920s-1550
- Large Format: LT665-1550

SP920s-1550



Ophir[®]

LT665-1550

Model	SP920s-1550		LT665-1550			
Application	NIR wavelengths, 1/1.8" format,		NIR wavelengths, 1" format,			
			higher resolution			
Wavelengths	1440 - 1605nm					
Active area	7.1mm x 5.3mm		12.5mm x 10mm	12.5mm x 10mm		
Beam sizes	600µm - 5.3mm		600µm - 9.9mm	600µm - 9.9mm		
Pixel spacing (1)	4.4µm x 4.4µm		4.54µm x 4.54µm	4.54µm x 4.54µm		
Number of effective pixels	1624 x 1224		2752 x 2192	2752 x 2192		
Dynamic range ⁽²⁾	~30 dB		~30 dB			
inearity with power	±5%		±5%			
Accuracy of beam width	±5%		±5%	±5%		
Frame rates in 12 bit mode (3)	15 fps at full resolution		27 fps at full resolution	27 fps at full resolution		
Shutter duration	70µs to multiple frames		31µs to multiple frames			
Gain control	0 dB to 24 dB		0.8 dB to 56 dB	0.8 dB to 56 dB		
Frigger	Supports both trigger and strobe out	Supports both trigger and strobe out				
Photodiode trigger (Optional) (4)	InGaAs response: SP90409	InGaAs response: SP90409				
Saturation intensity	7mW/cm ² at 1550nm					
_owest measurable signal	50µW/cm ²					
Damage threshold	50W/cm ² / 1J/cm ² with all filters installed for	r < 100ns pulse w	idth ⁽⁵⁾			
Ambient operating temperature	0 - 50° C		0 - 50° C. Recommended to conne	ct to heat sink		
Dimensions	29mm x 29mm x 29.5mm		43mm x 43mm x 65mm			
CCD recess	4.5mm		17.5mm			
Operation mode	Interline transfer CCD	Interline transfer CCD		Quad Tap interline transfer CCD		
PC interface	USB 3.0		USB 3.0			
DS supported	Windows 7 (64) and Windows 10					
Compliance	CE, UKCA, China RoHS					
Ordering Information						
Supported software	Item	P/N	Item	P/N		
BeamGage Professional	BGP-USB3-SP920s-1550	SP90562 ⁽⁶⁾	BGP-USB3-LT665-1550	SP90385 (7)		
BeamGage Standard	BGS-USB3-SP920s-1550	SP90561 (6)	BGS-USB3-LT665-1550	SP90384 (7)		

(3) In normal (non-shuttered) camera operation, the frame rate is the fastest rate at which the laser may pulse and the camera can still separate one pulse from the next. With electronic shutter operation, higher rate laser pulses can be split out by matching the laser repetition to the shutter speed.
(4) For more information please see "Optical Camera Trigger" catalog page.
(5) This is the damage threshold of the filter glass of the filters. Assuming all filters mounted with ND1 (red housing) filter in the front. Distortion of the beam may occur with average power densities of 5W/cm² for beam size 5mm, 10W/cm² for 2mm beam and >30W/cm² for 1mm beam.
(6) Comes with USB 3.0 cable, Power with Trigger cable and 3 ND filters.

3.3.4.3.1 GigE / USB InGaAs NIR Cameras

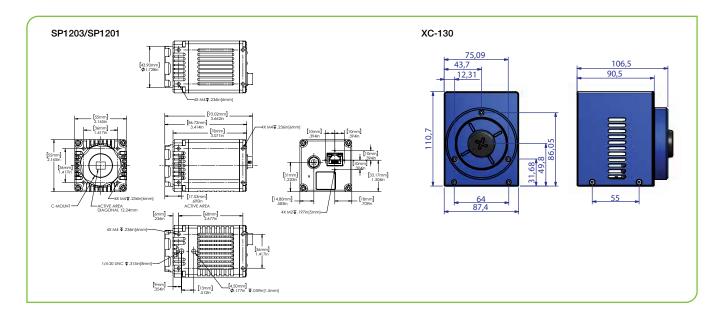
SP1203 high resolution, SP1201 low resolution and XC-130

Features

- NIR performance
- Resolution:
- VGA: SP1203
- QVGA: SP1201, XC- 130

📿 Ophir

- Exclusive Ultracal for ISO conforming accuracy
- Available with BeamGage software


SP1203/SP1201

XC-130

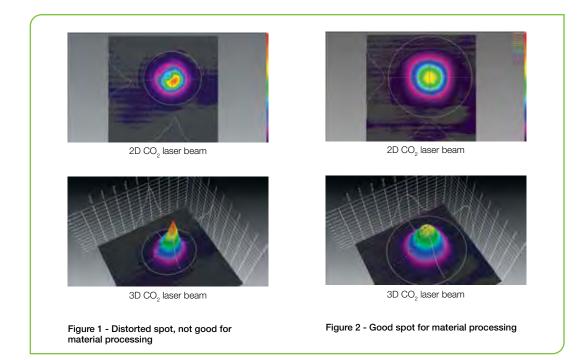
Model	SP1203		SP1201		XC-130	
Application	NIR wavelengths, high resolution, ROI and binning		NIR wavelengths, ROI and binning		NIR wavelengths, ROI and binning	
Wavelengths			900-1700nm		900-1700nm	
Active area	9.6 x 7.6mm		9.6 x 7.6mm		9.6 x 7.6mm	
Pixel spacing	15µm square		30µm square		30µm square	
Beam sizes	150µm-7.4mm		300µm-7.4mm		300µm-7.4mm	
Number of effective pixels	640 x 512 (VGA)		320 x 256 (QVGA)		320 x 256 (QVGA)	
CCD recess	C-mount, (Optional)		C-mount, (Optional)		C-mount, (Optional)	
Dynamic range	68dB		59dB		low gain 68dB, high g	ain 60dB
Saturation Intensity (1)			0.4 μW/cm ² @ 1064nm 0.2 μW/cm ² @ 1550nm			nm
Frame rate (2)					100 Hz ⁽³⁾	
Non-uniformity correction (NUC)	Automatic NUC table selection				2-Point correction plus bad pixel correction, NUC files provided	
Snap-shot mode	Via external TTL trigger, cable provided		Via external TTL trigger, cable provided		Via external TTL trigger, cable provided	
Compatible light sources			CW, Pulsed		CW, Pulsed	
Trigger	Supports both Trigger and strobe out		Supports both Trigger and strobe out		Supports both Trigger and strobe out	
Photodiode trigger (Optional) (4)			InGaAs response: SP90409		InGaAs response: SP90409	
Exposure control			150µs-10ms		1us to 400 sec in Low Gain mode	
Imager Cooling			Integrated Thermo-Electric Sensor Cooling (TEC)		Thermoelectric cooler plus forced convection	
Ambient operating temperature	-20° to 55° C		-20° to 55° C		0 - 50° C	
Dimensions	55mm x 55mm x 78mm		55mm x 55mm x 78mm		111mm x 87mm x 107mm	
Weight	370 g (0.8 lbs)		370 g (0.8 lbs)		approx. 1.8 kg	
PC interface			GigE (POE)		USB 2.0, special cable provided	
Compliance	CE, UKCA, China RoHS					
Ordering Information						
Supported software	Item	P/N	Item	P/N	Item	P/N
BeamGage Professional		SP90524 SP90536	BGP-GigE-SP1201 SP1201 Kit ⁽⁵⁾	SP90523 SP90535	BGP-USB-XC130	SP90241 ⁽⁶⁾
BeamGage Professional (for USA only)	BGP-GigE-SP1203	SP90548	BGP-GigE-SP1201	SP90547		
Notes:	 (1) Camera set to full resolution a (2) Highly dependent on PC proc (3) The uncorrected rate, final co (4) Far uncorrected rate in lance 	essor and graph rrected rate will I	nics adapter performance. be less.			

Ine Uncorrected rate, final corrected rate will be less.
 For more information please see "Optical Camera Trigger" catalog page.
 Contains USB 3.0 cable to Gigabit Ethernet Adaptor, CAT6 Ethernet Cable, Power with Trigger cable and 3 ND filters.
 Comes with USB A to micro B cable, Trigger cable and 3 ND filters.

3.3.4.3.1

3.3.4.4 13-355nm and 1.06-3000µm Cameras

Pyroelectric Technology


Spiricon has been the world leader in the manufacture of pyroelectric solid-state detector arrays and cameras. For over 25 years the Pyrocam[™] has been the overwhelming camera of choice for Laser Beam Diagnostics of IR and UV lasers and high temperature thermal imaging. Precision, stability, reliability, and versatility have become its proud heritage.

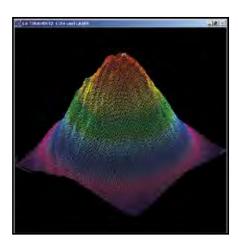
The Pyrocam IIIHR offers a 1/2X1/2 inch detector array with easy Windows[®] camera setup and quantitative image display through the BeamGage software, 16 bit digitizer, versatile Gigabit Ethernet PC interface, and an integral chopper for CW beams and thermal imaging.

The Pyrocam IV offers a 1X1 inch detector array with easy Windows[®] camera setup and quantitative image display through the BeamGage software, 16 bit digitizer, with a high-speed Gigabit Ethernet PC interface, and an integral chopper for CW beams and thermal imaging.

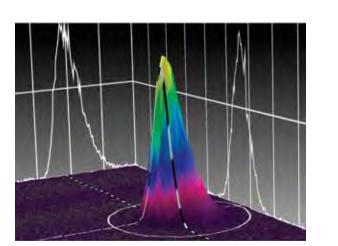
See Your Beam As Never Before

Both PyrocamTM cameras create clear and illuminating images of your laser beam profile. Displayed in 2D or 3D views, you can immediately recognize beam characteristics that affect laser performance and operation. This instantly alerts you to detrimental laser variations. Instantaneous feedback enables timely correction and real-time tuning of laser parameters. For example, when an industrial shop foreman saw the CO_2 laser beam profile in Figure 1 he knew immediately why that laser was not processing materials the same as the other shop lasers, that had similar profiles shown in Figure 2.

Ophir[®]

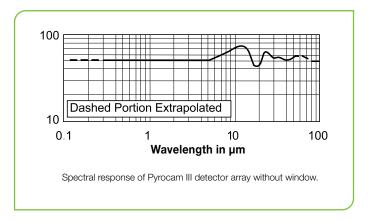

Pulsed and CW Lasers

The Pyrocams measure the beam profile of both pulsed and CW lasers. Since the pyroelectric crystal is an integrating sensor, pulses from femtosecond to 12.8ms can be measured. The pyroelectric crystal only measures changes in intensity, and so is relatively immune to ambient temperature changes. Because CW laser beams must be chopped to create a changing signal, the Pyrocam[™] contains an integral chopper.

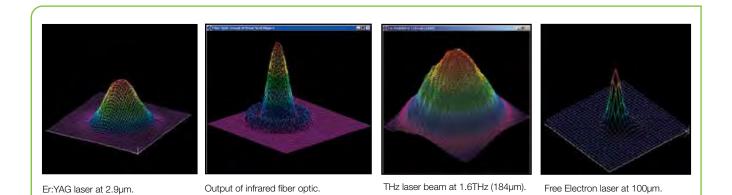

Measuring Terahertz Beam Profiles

Spiricon's Pyrocam pyroelectric cameras are an excellent tool for measuring THz lasers and sources. The coating of the crystal absorbs all wavelengths including 1µm to over 3000µm (0.1THz to 300THz). For THz sources the sensitivity of the Pyrocam is relatively low, at about 1.5mW/cm² at full output. With a S/N of 1000, beams of 30mW/cm² are easily visible.

In addition, with Spiricon's patented Ultracal baseline setting, multiple frames can be summed to "pull" a signal out of the noise. Summing 256 frames enables viewing of beams as low as 0.5-1.0mW/cm².

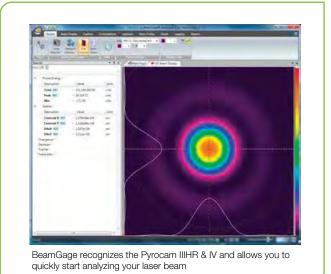

Pyrocam III imaging THz laser beam at 0.2THz (1.55mm) 3mW input power; 19 frames summed

Pyrocam IV imaging THZ laser beam 0.5 THz (5mm) 5mW input power; single frame


Broad Wavelength Response

The Pyrocam detector array has a very broadband coating which enables operation at essentially all IR and UV laser wavelengths. The curve ends at 100nm in the UV, but X-ray operation has been observed. Likewise the curve ends at 100µm in the far IR, but the camera has been used at >3000µm.

Thus you can use the Pyrocam in the near IR for Nd:YAG lasers at 1.06µm, and for infrared fiber optics at 1.3µm and 1.55µm. Use the Pyrocam for HF/DF lasers near 4µm and for Optical Parametric Oscillators from 1 µm to 10µm. It measures Free Electron Lasers between 193µm and 3000µm.

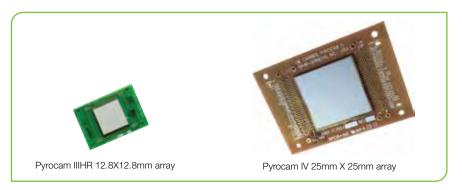


The PyrocamTM is extremely useful in the UV from 13nm to 355nm for Excimer lasers and for tripled or quadrupled Nd:YAG lasers. The detector is stable under UV illumination, without the deterioration experienced by CCD cameras. (The pyroelectric detector operates in the visible spectrum, and can see the alignment HeNe used with CO_2 lasers. However, spurious response from the underlying silicon multiplexer creates undesirable performance, and the camera is not recommended for quantitative visible measurements).

BeamGage Image Analysis Software

Both Pyrocams come bundled with BeamGage, the state-of-theart beam profiling system that performs rigorous data acquisition and analysis of laser beam parameters, such as beam size, shape, uniformity, divergence, mode content, and expected power distribution. Once the Pyrocam is connected to the PC and BeamGage is running, the software automatically detects the camera presence and is immediately ready to start taking images and displaying them on the monitor.

BeamGage is the industry's first beam profiling software to be newly designed, from scratch, using the most advanced tools and technologies. BeamGage is based on UltraCal[™], Spiricon's patented baseline correction algorithm that helped establish the ISO 11146-3 standard for beam measurement accuracy. BeamGage provides high accuracy results, guaranteeing the data baseline (zero-point reference) is accurate to 1/8th of a digital count on a pixel-by-pixel basis.


BeamGage permits the user to employ custom calculations for best

fit to an individual application. These user-defined computations are treated like the standard calculations. They can be displayed on the monitor, logged with results, and included in hard-copy reports.

The system also allows the user to configure the displayed calculations, set-up the screen layout, and password-protect the configuration. This permits secure product testing, ensures security in production environments where plant floor personnel interface with the system, and assures the validity of the data for Statistical Process Control (SPC).

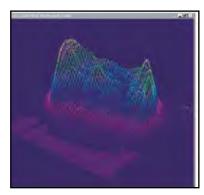
Hybrid Integrated Circuit Sensor

The Pyrocam consists of a LiTa0₃ pyroelectric crystal mounted with indium bumps to a solid-state readout multiplexer. This sensor, developed as the Company's core technology for the Pyrocam I, has proven to be the most rugged, stable, and precise IR detector array available. Light impinging on the pyroelectric crystal is absorbed and converted to heat, which creates charge on the surface. The multiplexer then reads out this charge. For use with short laser pulses, the firmware in the camera creates a very short electronic shutter to accurately capture the thermally generated signal.

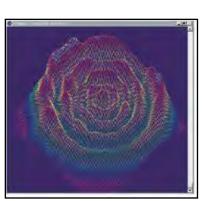
State-Of-The-Art Electronics

The camera features a high resolution A/D converter which digitizes deep into the camera noise. This enables reliable measurement and analysis of both large signals and low level signals in the wings of the laser beam. High resolution digitizing also enables accurate signal summing and averaging to pull weak signals out of noise. This is especially useful with fiber optics at 1.3µm and 1.55µm, and in thermal imaging.

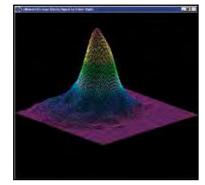
Applications Of The Pyrocam[™] IIIHR

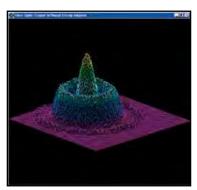

The Pyrocam is an ideal camera for use in scientific laboratory investigation of laser beams. This includes physics, chemistry, and electronic system designs. As an example, the photos below show a research CO₂ laser and a research Nd:YAG laser, both with cavity misalignment.

The camera is also useful in product engineering of CO_2 and other infrared lasers. The Pyrocam is an integral part of the assembly lines of many CO_2 laser manufacturers. Integrators of systems are using the Pyrocam sensor to make sure that optical systems are aligned and operating properly.


There are many medical applications of the Pyrocam, such as the analysis of excimer lasers used for eye surgery. In many cases these lasers need alignment to ensure that the eye surgery is performed as expected. Other medical IR lasers perform dermatology, for which the uniformity of the beam profile must be assured.

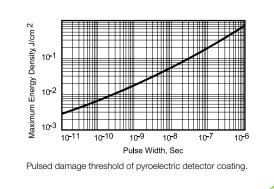
Fiber optic communications, at 1.3µm and 1.55µm make significant use of the Pyrocam for analyzing the beams being emitted, as well as analyzing properties of the beams before launching them into fibers. The greater stability of the Pyrocam make it a good choice over other cameras operating at telecommunication wavelengths.


The Pyrocam is becoming an essential tool in the maintenance of industrial infrared lasers, especially CO_2 . The Pyrocam replaces non-electronic mode burns and acrylic blocks by providing higher definition electronic recording of data, and analysis of short term fluctuations. The Pyrocam is superior to other electronic methods of measuring CO_2 lasers because the entire beam can be measured in a single pulse, and additional measurements made in real-time. This ensures that the beam did not change during the measurement.


CO₂ laser with cavity misalignment.

Nd:YAG laser with cavity misalignment.

CO₂ laser with cavity misalignment.


Nd:YAG laser with cavity misalignment.

Detector Damage Threshold

The Pyrocam sensor is capable of operation with intensities about 100 times greater than CCD cameras. This makes the camera ideal for use with high power lasers, as less attenuation is required. Nevertheless, pulsed lasers with fluence too high can evaporate the absorbing front electrode.

As shown the damage threshold increases with pulse width. With nanosecond and longer pulses, detector saturation occurs before damage. With shorter pulses it helps to increase the camera amplifier gain so that electronic saturation occurs before damage.

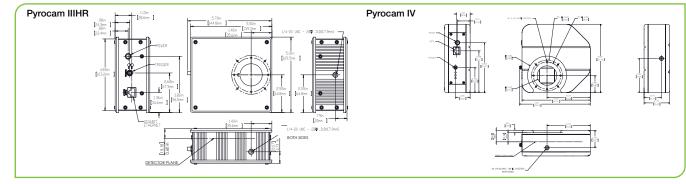
The sensor can be damaged by excessive CW power, which causes crystal cracking. Very few Pyrocam detectors have been damaged by CW power, but some have been ablated by high peak pulse energy.

3.3.4.4.1 Pyroelectric Array Cameras

Pyrocam[™] IIIHR & Pyrocam[™] Series

Features

- Spectral ranges available from 13 to 355nm and 1.06 to >3000µm
- Image CO₂ lasers, telecom NIR lasers, THz sources and other infrared sources out to Far IR
- Solid state array camera with 1000:1 linear dynamic range for accurate profiling
- Integrated chopper for CW beams and thermal imaging
- Interchangeable windows available for a variety of applications
- Includes BeamGage® Laser Beam Analysis Software for quantitative analysis and image display


Pyrocam IIIHR

Model	Pyrocam IIIHR			Pyrocam IV			
Application	UV and IR	MIR (1)		UV and IR	Ν	/IR (1)	
Wavelengths	13 - 355nm	3 - 5µm		13 - 355nm	3	- 5µm	
	1.06 - 3000µm	•		1.06 - 3000µm			
nterchangeable windows	See selection in Order	ing section		See selection in O	Ordering section		
Detector array details		0			0		
Active area	12.8mm x 12.8mm			25.6mm x 25.6mr	m		
Beam sizes	1600µm - 12.7mm	1600µm - 12.7mm 1			n		
Pixel spacing	80µm x 80µm			80µm x 80µm			
Number of effective pixels	160 x 160			320 x 320			
Pixel size	75µm x 75µm			75µm x 75µm			
Chopped CW operation							
Chopping frequencies	25Hz, 50Hz			25Hz, 50Hz			
owest measurable signal	64nW/pixel or 1.0 mW	//cm² (25Hz)		64nW/pixel (25Hz) or 1.0mW/cm ²	(25Hz)	
	96nW/pixel or 1.5 mW			96nW/pixel (50Hz			
Noise equivalent power (NEP)	13nW/Hz1/2/pixel (1Hz			13nW/Hz1/2/pixel (
Saturation intensity (25Hz, 50Hz)	3.0W/cm ² , 4.5W/cm ²	/		3.0W/cm ² , 4.5W/			
Damage threshold power							
Over entire array	2W			2W			
Peak Power Density	8W/cm ² (Chopped mo	ode)		8W/cm ² (Chopped	d mode)		
· •••••	4W/cm ² (CW in pulsed			4W/cm ² (CW in pi			
Pulsed operation		,					
aser pulse rate	Single-shot to 1000Hz	2		Single-shot to 100	00Hz		
Pulse width	1fs - 12.8ms			1fs - 12.8ms			
owest measurable signal	0.5nJ/pixel			0.5nJ/pixel			
	8µJ/cm ²			8µJ/cm ²			
Saturation energy	15mJ/cm ²			15mJ/cm ²			
Damage threshold	20mJ/cm ² (1ns pulse)			20mJ/cm ² (1ns pu	ulse)		
	600mJ/cm ² (1µs pulse			600mJ/cm ² (1µs p			
Frigger input							
High logic level	3.5 - 6.0V DC			3.5 - 6.0V DC			
Low logic level	0 - 0.8V DC			0 - 0.8V DC			
Pulse width	4µs min			4µs min			
Trigger	Supports both trigger	and strobe out		Supports both trig	gger and strobe	out	
Photodiode trigger (Optional) ⁽²⁾	InGaAs response: SPS	90409		InGaAs response:	SP90409		
Operating & conditions							
Power	12VDC			12VDC			
_ine frequency	60/50Hz External Sup	vlq		60/50Hz External	Supply		
Power consumption	12W			12W			
Operating temperature	5°C to 50°C			5°C to 50°C			
Physical							
Dimensions	140mm H X 130mm V	V X 60mm D		147.3mm H X 147	7.1mm W X 55.2	2mm D	
Detector Position	Centered in width			53.8mm from bot			
	35.6mm from bottom			36.8mm from bot			
	15.15 ± .75mm behind	d front cover (without includ	ed C-mount attached)	19.7 ± .75mm bel	hind front cover		
	Tilt <2°			Tilt <2°			
Neight	0.85Kg (1.83lbs)			1.2kg (2.65lbs)			
PC interface		802.3ab), GigE Vision cor	npliant	Gigabit Ethernet (I		GigE Vision complia	nt
DS supported	Windows 7 (64) and Windows 10		Windows 7 (64) and Windows 10				
Compliance	CE, UKCA, China Rol-			CE, UKCA, China			
Array quality	, , , , , , , , , , , , , , , , , , , ,			, , , , , , , , , , , , , , , , , , , ,			
	<75 bad pixels, all cor	rectable		<300 bad pixels, a	all correctable		
	No uncorrectable clus			No uncorrectable			
Ordering information							
Supported software	Item	P/N Item	P/N	Item	P/N	Item	P/N
				DV/N/ Q A DDQ	0000101(1)	DV/IV/ O N/ID DDO	

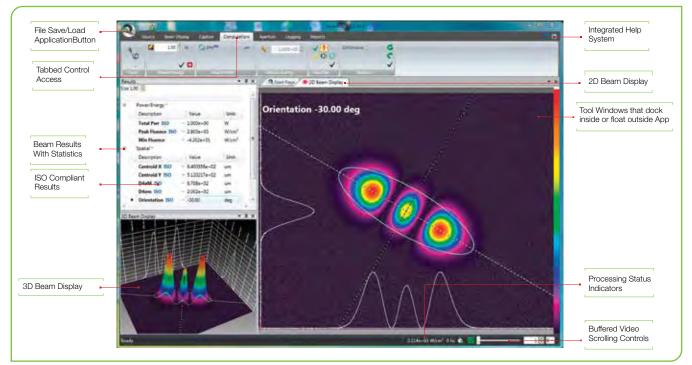
Supported software Item P/N PY-III-HR-C-A-PRO BeamGage Professional

SP90405 ⁽³ PY-III-HR-C-MIR-PRO SP90415 ⁽³⁾ PY-IV-C-A-PRO SP90404 (4) PY-IV-C-MIR-PRO BeamGage Professional PY-III-FIR-C-A-PRO SP9040 PY-IV-C-A-PRO SP90415 PY-IV-C-A-PRO SP90415 PY-IV-C-A-PRO SP9040 PY-IV-C-A-PRO SP90404 PY-IV-C-(1) The MIR (Mol-R) versions on the Pyrocam IIII-FIR designed specifically for MicI-RI basers in the spectral range 5 to 5µm. The MIR versions feature specifically designed sensors that maximize the optical signal for high fidelity spatial profile measurements of laser beam in the 3 to 5µm spectral range. (2) For more information please see "Optical Camera Trigger" catalog page. (3) Comes with USB 3.0 cable to Gigabit Ethernet Adaptor, CAT6 Ethernet Cable, Trigger cable SMA to BNC, power supply with locking connector, and adapter Kit for C-Mount Lens. (4) Comes with USB 3.0 cable to Gigabit Ethernet Adaptor, CAT6 Ethernet Cable, Trigger cable SMA to BNC and power supply with locking connector.

SP90414 (4)

Accessories Ordering Information

Item	Description	P/N
Optional windows for Pyrocam [™] IIIHR		
PY-III-HR-W-BK7-1.064	Pyrocam III-HR window assembly, BK7, A/R coated for 1.064µm	SP90365
PY-III-HR-W-SI-1.05-2.5	Pyrocam III-HR window assembly, Si, A/R coated for 1.05 to 2.5µm	SP90366
PY-III-HR-W-SI-2.5-4	Pyrocam III-HR window assembly, Si, A/R coated for 2.5 to 4µm	SP90367
PY-III-HR-W-GE-3-5.5	Pyrocam III-HR window assembly, Ge, A/R coated for 3 to 5.5µm	SP90368
PY-III-HR-W-GE-10.6	Pyrocam III-HR window assembly, Ge, A/R coated for 10.6µm	SP90369
PY-III-HR-W-GE-8-12	Pyrocam III-HR window assembly, Ge, A/R coated for 8 to 12µm	SP90370
PY-III-HR-W-ZNSE-10.6	Pyrocam III-HR window assembly, ZnSe, A/R coated for 10.6µm	SP90371
PY-III-HR-W-ZNSE-10.2µm & 10.6µm	Pyrocam III-HR window assembly, ZnSe, A/R coated for 10.2µm & 10.6µm	SP90412
PY-III-HR-W-ZNSE-2-5	Pyrocam III-HR window assembly, ZnSe, A/R coated for 2 to 5µm	SP90372
PY-III-HR-W-BaF2-Uncoated	Pyrocam III-HR window assembly,BaF2 uncoated for 193 to 10µm	SP90373
PY-III-HR-W-POLY-THZ	Pyrocam III-HR window assembly, LDPE, uncoated for Terahertz wavelengths	SP90374
Optional windows for Pyrocam [™] IV		
PY-IV-W-BK7-1.064	Pyrocam IV window assembly, BK7, A/R coated for 1.064µm	SP90301
PY-IV-W-SI-1.05-2.5	Pyrocam IV window assembly, Si, A/R coated for 1.05 to 2.5µm	SP90302
PY-IV-W-SI-2.5-4	Pyrocam IV window assembly, Si, A/R coated for 2.5 to 4µm	SP90303
PY-IV-W-GE-3-5.5	Pyrocam IV window assembly, Ge, A/R coated for 3 to 5.5µm	SP90304
PY-IV-W-GE-10.6	Pyrocam IV window assembly, Ge, A/R coated for 10.6µm	SP90305
PY-IV-W-GE-8-12	Pyrocam IV window assembly, Ge, A/R coated for 8 to 12µm	SP90306
PY-IV-W-ZNSE-10.6	Pyrocam IV window assembly, ZnSe, A/R coated for 10.6µm	SP90307
PY-IV-W -ZNSE-2-5	Pyrocam IV window assembly, ZnSe, A/R coated for 2 to 5µm	SP90308
PY-IV-W-ZNSE-UNCOATED	Pyrocam IV window assembly, ZnSe, uncoated	SP90336
PY-IV-W-POLY-THZ	Pyrocam IV window assembly, LDPE, uncoated for Terahertz wavelengths	SP90309



3.3.5 BeamMic[™] - Basic Laser Beam Analyzer System

- High-speed false color beam intensity profile displays in both 2D and 3D
- Operates in Windows 7 and Windows 10
- Numerical beam profile analysis employs patented advanced calibration algorithms
- Extensive set of ISO quantitative measurements
- ISO beam width and diameter methods
- Enhanced window layout tools to get the most out of the desktopdisplay area
- Pass/fail testing available on most all measured parameters
- Support for USB SPxxx series cameras
- Supports satellite windows on multiple monitors
- Continuous zoom scaling in both 2D and 3D
- Results logging capabilities exportable to Excel
- Industry std data file formats, HDF5 and CSV
- Configurable Report Generator that allows cut and paste of results, images and settings from .PDF and .XPS file types
- Statistical Analysis of all measured parameters
- Both Drawn and Auto Aperture for isolating beam data
- Integrated automatic Help linked into this .pdf Users Guide
- •Automation interface via .NET components

BeamMic is an introductory product for those that do not need all of the features in our award winning beam profiling product, BeamGage. BeamMic includes a simplified set of measurements allowing for basic beam characterization to help improve your system performance without going to a full-featured SPC type system. This is perfect for the operator to do a quick check on the laser system prior to starting their process. BeamMic meets many of our industrial customer's basic needs at a cost effective price.

The beam's size, shape, uniformity or approximation to the expected power distribution, can make or break an application. Accurate knowledge of these parameters is essential to the accuracy of any laser-based application. As laser applications push the boundaries of laser performance it is becoming more critical to understand the operating criteria.

BeamMic Main Display Screen

3.3.5

3.3.5.1 Software Specifications

Features	BeamMic - Laser Beam Analyzer Software
Features Overview	Designed for entry level or basic profiling needs
	Supports our patented Ultracal algorithm plus
	Auto-setup and Auto-exposure capabilities
	Extensive set of ISO quantitative measurements
	Support for high and low resolution USB cameras
	Simultaneous 2D and 3D displays
	Multi-instance, multi-camera use
	Supports Satellite windows on multiple monitors
	Continuous zoom scaling in both 2D and 3D
	Camera ROI support
	Manual and Auto-aperturing to reduce background effects
	Pass/Fail on all results items, w/multiple alarm options
	Results logging capabilities in a reloadable
	Industry standard data file format
	Configurable Report Generator that allows cut and paste of results, images and settings.
Negetiteti e Oslandational Davis Davite	Supports English, German, Japanese and Chinese Windows OS in 64bit . Multilingual GUI in English, Japanese and Chinese.
Quantitative Calculations; Basic Results	(per ISO 11145, 11146-1/-3, and 13694)
Power/Energy Results	Total power or energy
	Peak power/energy density
	Min. Fluence
Spatial Results	Peak and Centroid locations
	Beam width
	Second Moment (D4s)
	Knife Edge 90/10
	Knife Edge (User selectable level)
	Percent of Peak (User selectable)
	Percent of Total Energy (User selectable)
	Encircled power smallest slit @ 95.4
	Moving Slit (User Selectable)
	Beam diameter
	Average diameter (based on x/y widths)
	Second Moment (DAs)
	Eliptical Results
	Elliptical orientation
	Ellipticity
	Englishy Eccentricity
2D Features	Continuously zoomable and resizable displays in satellitable window
2D realures	Continuousiy zoonable and resizable displays in satellitable window
	Zoomable to subpixel resolution for origin and cursor placements
	Pixel boundaries delineated at higher zoom magnifications
	Adjustable Cursors that can track peak or centroid
	Adjustable manual apertures
	Viewable Auto-aperture placement
	Displayed beam width marker
	Integrated Mouse actuated pan/zoom controls
	Manual or fixed origin placement
3D Features	3D graphics utilize solid surface construction with lighting and shading effects
	Integrated Mouse actuated pan/zoom/tilt/rotate controls
	Selectable Mesh for drawing speed vs resolution control
	Continuously zoomable and resizable displays in satellitable window
	Continuous Z axis display magnitude scaling
	User enabled backplanes with cursor projections
Statistical Analysis	Performed on all measurement functions with on-screen display
	Choices of intervals
	Manual start/stop
	Time from 1 second to 1000 hours
	Frames from 2 to 99,999
	Measurements reported
	Current frame data, Mean, Standard Deviation, Minimum, Maximum of each calculation performed
ile types	Industry Standard HDF5 data and setup file format which are compatible in third party applications such as MatLab and Mathmatica
	Matrimatica Math program and Excel compatible ASCII-csv results files
	Graphics in jpg file format
Drinting	A user defined single file output that can contain settings, beam displays, beam profiles, results in either .pdf or .xps file formats
Printing	Images, reports, results, statistics and setup information
	Option to print many frames in a single operation
	WYSIWYG images
Pass/Fail	Set Maximum/Minimum limits on all calculations and statistics
	Red/Green font color indication on result items
	Multiple choices for indication of failed parameters, including $ extsf{TTL}$ pulse for external alarm
	Master pass/fail which triggers alarm on any failure
	USB signal, beep, stop, and log alarm options
ogging	
	Results in ASCII-csv
	Continuous Logging
	Time Interval Logging
	Frame Count Logging
	Pass/Fail Sampling

Features	BeamMic - Laser Beam Analyzer Software
Exporting	Convert frame buffer data to third party format
	Export a user specified number of frames from the buffer
	Export Image Data: ASCII-cvs Export Results: ASCII-csv
	Export Picture: jpg, gif, tiff, bmp, png file formats supported
	Export Inage Data in Aperture
ntegrated Help	PDF Operators Manual
	Context Sensitive - "Whats this?" Help
	Context Sensitive Hints
Signal Conditioning for Enhanced Accuracy	Spiricon's patented Ultracal enables more accurate beam measurement and display. Ultracal takes a multi- frame average of the baseline offset of each individual pixel to obtain a baseline accurate to approximately 1/8 of a digital count. This baseline offset is subtracted from each frame, pixel by pixel, to obtain a baseline correction accurate to 1/8 digital count. Spiricon's Ultracal method retains numbers less than zero that result from noise when the baseline is subtracted. Retaining fractional and negative numbers in the processed signal can increase the beam width measurement accuracy by up to 10X over conventional baseline subtraction and clip level methods. Spiricon's Ultracal conforms to the best method described in ISO 11146-3:2004
Frame Averaging	Up to 256 frames can be averaged for a signal-to-noise ratio, S/N, improvement of up to 16X (Noise is averaged up to 1/256th [8 fractional bits]). Data is processed and stored in a 32bit format
Frame Summing	Up to 256 frames can be summed to pull very weak signals out of the noise.
	Due to the precise nature of Ultracal baseline setting, (i.e., a retention of both positive and negative noise components) summing
Convolution (Adjacent Pixel Averaging)	of frames can be performed without generating a large offset in the baseline Choice of 5 convolution algorithms for spatial filtering for both display and calculations. Spatial filtering improves the visual S/N
Camera Features	Camera features are governed by the capabilities of the various cameras that will interface with these software products, and
	second by which of these camera features are implemented in the software. This section will describe typical camera features
	supported in the application
	Black Level Control (used by Ultracal and Auto-X and Auto-setup) Gain Control (used by Auto-X and Auto-setup)
	Exposure Control (used by Auto-X and Auto-setup)
	Pixel Sampling
	Bits per pixel setting
	External Trigger Input
	Trigger Delay Strobe Output
	Strobe Delay
	External Trigger Probe
	Internal Trigger Probe
Camera related features in the applications	These are features related to but not generally dependent upon the camera design
	Gamma Correction Gain Correction
	Bad Pixel Correction
	Lens Applied Option
	Pixel scale settings
	Magnification settings
	Frame buffer settings
	Ultracal Frankla Auto X (auto avecaura control)
	Enable Auto-X (auto exposure control) Perform an Auto-Setup
	8 & 12 bits per pixel
	Select Format
	Measure S/N ratio
Trigger, Capture and Synchronization Methods	Capture methods are features related to the application while Synchronization methods relate more to the abilities of the specific camera. NOTE: Frame capture rates are determined by many factors and are not guaranteed for any specific operating configuration. Trigger modes
	• CW - captures continuously, see Capture Options below
	Trigger-In from laser: Trigger pulses supplied to the camera Strobe-Out to laser: Strobe pulses output from the camera
	 Strobe-Out to laser: Strobe pulses output from the camera Video Trigger: Frame captured and displayed only when the camera sees a signal greater than a user set level
	Capture options
	· Capture options are redefined and are approached in a different manner than older products. The items listed below will allow
	for all of the previous methods but with more flexibility than ever before
	 Results Priority: Results priority will slow the capture rate to be in sync with the computational results and display updates Frame Priority: Frame priority will slow results and display updating to insure that frames are collected and stored in the frame
	buffer as fast as possible (replaces block mode)
	Stop After: Will collect a set number of frames and then stop (replaces Single-Shot mode)
	Periodic: Will collect frame at a programmed periodic rate
	Periodic Burst: Will collect frames in a Burst at programmed periodic rates
Automation Interface (.NET)	 Post processing is still available but is done via a different mechanism and is limited to only data file sources Automation Interface with examples in LabVIEW, Excel and Net VB
	Automate launch and termination of the application
	Automate start, stop, Ultracal, Auto-X and Auto Setup
	Automate the loading of application setups
	Automate control of most camera settings
	Automate a subset of the application features and controls
	Automate the capture of Binary Video Data Automate the acquisition of application results
	Automate the acquisition of application leades
System Requirements	PC computer running Windows 7 and Windows 10 Laptop or Desktop.
	GHz Pentium style processor, dual core recommended
	Minimum 2GB RAM
	Accelerated Graphics Processor Hard drive space suitable to hold the amount of video data you expect to store (50-100 GB recommended)

Ordering Information

Item	Description	P/N
BeamMic [™] USB3 Beam Analyzer	Systems (camera and software)	
BM-USB3-SP932U	BeamMic software, software license, 1/1.8" format 2048X1536 pixel camera with 4.5mm CMOS recess. Comes with USB 3.0 cable, Trigger cable and 3 ND filters	SP90608
BM-USB3-SP920s	BeamMic software, software license, 1/1.8" format 1624X1224 pixel camera with 4.5mm CCD recess. Comes with USB 3.0 cable, Trigger cable and 3 ND filters	SP90551
BM-USB3-SP920s-1550	BeamMic software, software license, 1/1.8" format 1624x1224 pixel camera with 4.5mm CCD recess. Phosphor coated to 1550 nm. Comes with USB cable and 3 ND filters	SP90563
Software Upgrades		
BeamMic to BGS Upgrade	Upgrade BeamMic to BeamGage Standard Edition. Requires a camera key to activate. (SP cameras may require a firmware upgrade to enable ROI features)	SP90316
BeamMic to BGP Upgrade	Upgrade BeamMic to BeamGage Professional Edition. Requires a camera key to activate (SP cameras may require a firmware upgrade to enable ROI features)	SP90317
Optical Synch for Pulsed Lasers		
Photodiode Trigger, Si, 1100	Optical trigger assembly which can be mounted on camera or separately to sense laser pulses and synchronize SP cameras with pulses. See optical trigger data sheet	SP90408
Recommended Optional		
LBS-300s-BB	Dual beam splitters and configurable 9 ND filters for 190-1550nm; screws onto front of camera	SP90467

3.3.5.2 Cameras for BeamMic™

Camera Compatibility

For lasers between 190-1100nm wavelengths, BeamMic interfaces to both silicon CCD and CMOS USB cameras. For applications between 1440-1605nm, BeamMic supports cost effective phosphor coated CCD cameras.

190-1100nm

SP932U
1/1.8" format, slim profile, wide dynamic range, CW & pulsed lasers, adjustable ROI
34.5µm - 5.3mm
2048 x 1536
4.5±0.11mm
USB 3.0
194

* May be useable for wavelengths below 300nm but sensitivity is low and detector deterioration may occur. Therefore UV image converter is recommended.

Model	SP920s
Application	1/1.8" format, high resolution, wide dynamic range, CW & pulsed lasers, adjustable ROI
Beam sizes	44µm - 5.3mm
Number of effective pixels	1624 x 1224
CCD recess	4.5 mm
PC Interface	USB 3.0
Page in catalog	195

* May be useable for wavelengths below 340nm but sensitivity is low and detector deterioration may occur. Therefore UV image converter is recommended.

1440-1605nm

ModelSP920s-1550ApplicationNIR wavelengths, 1/1.8" format, low resolution, adjustable ROI and binningBeam sizes600µm - 5.3mmNumber of effective pixels1624 x 1224CCD recess4.5 mmPC InterfaceUSB 3.0Page in catalog198

Ophir[®]

3.3.6 Focal Spot Analyzer

Captures the beam size, shape and profile at focus

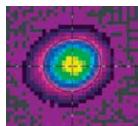
- Image focal spots down to 34.5µm in size
- For laser powers up to 400W ⁽¹⁾ (additional external ND filters required) and up to 5kW for FSA- HP version
- Can measure systems with focal length as short as 73mm ⁽²⁾ (exact path length distance within the assembly will be NIST/National Lab calibrated and includes a calibration certificate +/-50µm)
- Produces undistorted sample of laser under test
- Adjustable attenuation maximizes system dynamic range
- Up to 1 x 10⁻¹⁰ attenuation available (without external filters)
- Analyzer includes camera, attenuation, BeamGage software and calibration certificate

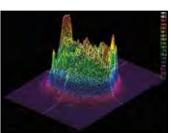
Measure your laser beam power distribution and focal spot size of wavelengths from 300 – 1100nm.

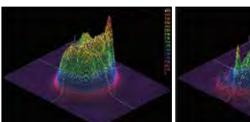
The average power can be from <1 to 400 Watts and up to 5 kW for FSA-HP, the focal spot can be as small as 34.5μ m. The FSA can also be used to measure how the focal spot shifts with power during its critical start-up phase.

The FSA is a combination of a camera, Beam Splitter, natural density filters and a BeamGage software.

FSA-HP

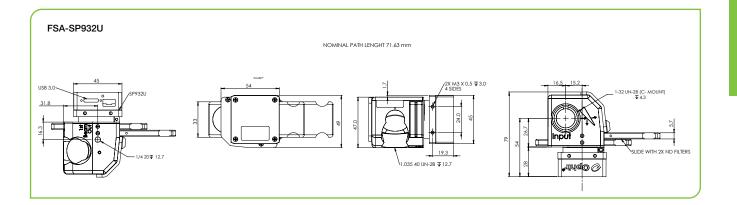

For measurement of focal position and profile of high power lasers above 1kW at NIR (~1064nm) region, FSA-HP version can be used. It allows same operation as standard FSA but operates up to 5kW or 15MW/cm² without significant heating. Only 0.0001% (1/10⁶) of the incident beam is reflected towards Ophir Beam Profiler, enabling beam sampling of extremely high powers and power densities.


Operation


The assembly is placed below the final focusing lens of the laser at a distance equal to the expected focal length less the \sim 73mm of the calibrated distance, so the beam will be focused on the camera layer. The focal spot is found by moving the assembly closer and farther from the beam until the smallest spot size is seen. The distance between the focusing lens and the datum point on the FSA assembly is added to the distance from the datum to the camera array (each FSA assembly will be factory calibrated to within +/- 50 μ m). These two measurements will give you the exact distance of your lasers focal spot.

(1) For Gaussian beam diameter <1/2 the clear aperture and depending on ND filter and camera saturation limits the maximum power may be as high as 1000W.</p>
(2) Using beam expanders, focal spots as small as 10µm can be measured and calibrated, Ask your Ophir representative about special calibrated focal spot analyzers.

Examples of Usage



65µm diameter focal spot

Ophir

Focal spot spatial power density changing with laser power level

Attenuator (2 beam splitters, a removable beam block)

Cameras Specifications

Model	SP932U	LT665
Format	1/1.8"	1"
Wavelengths (1)	190 - 1100nm	190 - 1100nm
Active Area	7.06mm x 5.3mm	12.5mm x 10mm
Beam sizes	34.5µm - 5.3mm	46µm - 9.9mm
Pixel spacing	3.45µm x 3.45µm	4.54µm x 4.54µm
Number of effective pixels	2048 x 1536	2752 x 2192
Dynamic range	72 dB	54 dB
_inearity with Power	±1%	±1%
Accuracy of beam width	±2%	±2%
Frame rates in 12 bit mode (2)	24 fps at full resolution	27 fps at full resolution
Shutter duration	25µs to 2000ms	31µs to multiple frames
Gain control	1.46 dB to 256 dB	0.8 dB to 56 dB
Trigger	Hardware/Software trigger & strobe out	Hardware/Software trigger & strobe out
Photodiode trigger (Optional) (3)	Si response: SP90408	Si response: SP90408
Saturation intensity (4)	32µW/cm ² at 632nm, 500µW/cm ² at 1064nm	14µW/cm ²
owest measurable signal (4)	0.2nW/cm ²	0.3nW/cm ²
Damage threshold (5)	50W/cm ² / 1J/cm ² with all filters installed for < 100ns pulse width	50W/cm ² / 1J/cm ² with all filters installed for < 100ns pulse width
Dimensions	45mm x 45mm x 22.5mm	43mm x 43mm x 65mm
mager recess	4.5mm	17.5mm
mage quality at 1064nm	Pulsed with trigger sync - excellent Pulsed with video trigger - good CW - good	Pulsed with trigger sync - excellent Pulsed with video trigger - good CW - good
Operation mode	CMOŠ, Global shutter	Quad Tap interline transfer CCD
PC interface	USB 3.0	USB 3.0
DS Supported	Windows 7 (64) and Windows 10	Windows 7 (64) and Windows 10
Compliance	CE, UKCA, China RoHS	CE, UKCA, China RoHS

(2) Highly dependent on PC processor and graphics adapter performance.
(3) For more information please see "Optical Camera Trigger" catalog page.
(4) Camera set to full resolution at maximum frame rate at 633nm CW wavelength. Camera set to minimum useful gain and 1ms exposure time for saturation test and maximum useful gain and 35ms exposure time for lowest signal test.
(5) This is the damage threshold of the filter glass of the filters. Assuming all filters mounted with ND1 (red housing) filter in the front. Distortion of the beam may occur with average power densities of 5W/cm² for beam size 5mm, 10W/cm² for 2mm beam and >30W/cm² for 1mm beam.

LBS -300s Specifications

Model	LBS-300s-UV	LBS-300s-VIS	LBS-300s-NIR	LBS-300HP-NIR	LBS-300s-BB
Wavelengths (1)	266-355nm	400-950nm	950-1800nm	1000-1100nm	190-2500nm
Wedge Material	UVFS	UVFS	UVFS	UVFS	UVFS
Wedge Coating	A/R ≤1%	AR ≤1%	AR ≤1%	AR ≤0.1% special surface	No coating, 4% reflection
Clear aperture	17.5mm	17.5mm	17.5mm	15mm	17.5mm
Reflection (1) (2)	0.01%	0.01%	0.01%	<0.0001% (1/106)	0.16%
Wedge ND value, each	ND ≥2	ND ≥2	ND ≥2	ND ≥3	ND ~1.3
Maximum allowable input to wedge	10MW/cm ² 5 J/cm ²	10MW/cm ² 5 J/cm ²	10MW/cm ² 5 J/cm ²	15MW/cm ² , 10J/cm ² at beam splitter	10MW/cm ² 20 J/cm ²
ND Filters	Inconel	Bulk ND	Bulk ND	Bulk ND	Combination of Inconel and Bulk ND
ND Values, nominal	0.3, 0.7, 1.0, 2.0, 3.0, 4.0 (Blue holders)	0.3, 0.7, 1.0, 2.0, 3.0, 4.0 (Green holders)	0.4, 0.8, 1.0, 2.0, 3.0, 4.0 (Red holders)	0.4, 0.8, 1.0, 2.0, 3.0, 4.0 (Red holders)	10 filters UV, VIS and NIR
Filter Slides	3	3	3	3	5
Maximum allowable input to filter (3)	100 W/cm ² CW 20mJ/cm ² , 10ns pulse	50 W/cm ² 1J/cm2, 10ns pulse	50 W/cm ² 1J/cm2, 10ns pulse	50 W/cm ² 1J/cm ² , 10ns pulse	See UV, VIS and NIR specifications
Notes:		quired, contact your Ophir represent		SA operating wavelengths is limited	by SP932U camera 300-1100nm, In

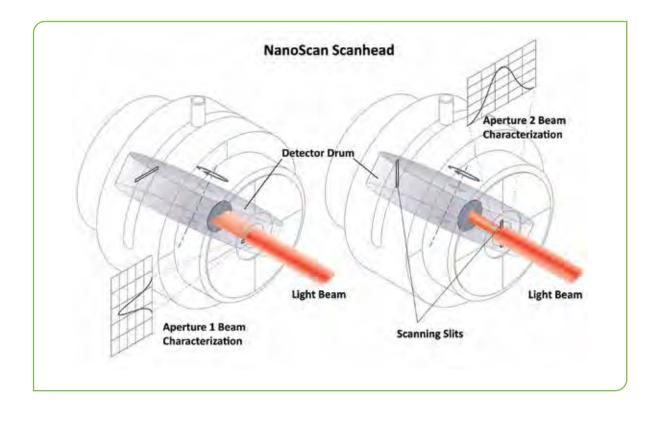
(2) For relievance spectra see LbS-300 User Note.
(3) This is the damage threshold of the filter glass of the filters. Distortion of the beam may occur with average power densities of 5W/cm² for beam size 5mm, 10W/cm² for 2mm beam and >30W/cm² for 1mm beam

Ordering Information

Model	SP932U		LT665	
	Item	P/N	Item	P/N
LBS-300s-UV	FSA-UV-SP932U	SP90614	BGP-LBS-300s-UV-CAL-LT665	SP90481
LBS-300s-VIS	FSA-VIS-SP932U	SP90615	BGP-LBS-300s-VIS-CAL-LT665	SP90482
LBS-300s-NIR	FSA-NIR-SP932U	SP90616	BGP-LBS-300s-NIR-CAL-LT665	SP90483
LBS-300s-BB	FSA-BB-SP932U	SP90617	BGP-LBS-300s-BB-CAL-LT665	SP90484
LBS-300HP-NIR	FSA-HP-NIR-SP932U	SP90603		
Note:	Comes with BeamGage Professional softwa	re license, NIST/ National Lab trac	ceable calibrated path length from top of unit to CCD an	ay, USB cable and 3 ND filte

Ophir[®]

3.4 Introduction to Scanning-Slit Profilers


The scanning slit beam profiler moves two narrow orthogonal slits in front of a linear photo-detector through the beam under analysis. Light passing through the slit induces a current in the detector. Thus, as the slit scans through the beam, the detector signal is linearly proportional to the spatial beam irradiance profile integrated along the slit. A digital encoder provides accurate slit position. The photo-induced current signal is digitized and analyzed to obtain the beam profile in both X and Y from the two orthogonal slits.

The slit apertures act as physical attenuators, preventing detector saturation for most beam applications. High dynamic range amplification allows operation over many orders of magnitude in beam power.

From these profiles, important spatial information such as beam width, beam position, beam quality, and other characteristics are determined. This technique can accommodate a wide variety of test conditions. Because slit scanners measure beams at high powers with little or no attenuation, they are ideal to profile beams used in material processing.

Carbon dioxide (CO_2) lasers are widely used in materials processing, and have a 10.6 micron wavelength that cannot be profiled with most cameras. Slit scanners, therefore, provide an convenient means of measuring high-resolution CO_2 lasers with powers up to and exceeding 1000 watts.

3.4.1 NanoScan 2s

Scanning Slit Beam Profiler For High Accuracy Dimensional Measurement

NanoScan 2s combines the convenience and portability of direct USB connectivity with the speed, accuracy, and dynamic range that users have come to expect from the Photon NanoScan slit based profilers. The NanoScan 2s is available with a silicon, germanium or pyroelectric detector, which allows it to profile lasers of any wavelength from UV to far infrared, out to 100µm and beyond. With the new NanoScan 2s software package, the user can configure the display interface however it is desired; displaying those results of most interest on one easy-to-read screen, or on multiple screens.

The NanoScan slit profiler is the most versatile laser beam profiling instrument available today: providing instantaneous feedback of beam parameters for CW and kilohertz pulsed lasers, with measurement update rates to 20Hz. The natural attenuation provided by the slit allows the measurement of many beams with little or no additional attenuation. The high dynamic range makes it possible to measure beams while adjustments to focus are made without having to adjust the profiler. Just aim the laser into the aperture and the system does the rest!

Capabilities

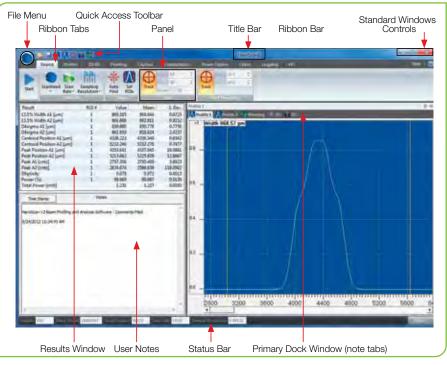
NanoScan 2s is a PC-based instrument for the measurement and analysis of laser beam spatial irradiance profiles in accordance with the ISO standard 11146. The scan heads also measure power in accordance with ISO 13694.

NanoScan uses the scanning slit, one of the ISO Standard scanning aperture techniques. It can measure beam sizes from microns to centimeters at beam powers from microwatts to over kilowatts, often without attenuation. Detector options allow measurement at wavelengths from the ultraviolet to the infrared.

The NanoScan 2s digital controller has 16-bit digitization of the signal for enhanced dynamic range up to 35dB power optical. With the accuracy and stability of the beam profile measurement you can measure beam size and beam pointing with a 3-sigma precision of several hundred nanometers. The software controllable scan speed and a "peak-connect" algorithm allows the measurement of pulsed and pulse width modulated lasers with frequencies of 10kHz and higher*. The NanoScan is also able to measure up to 16 beams, or regions of interest, in the aperture simultaneously.

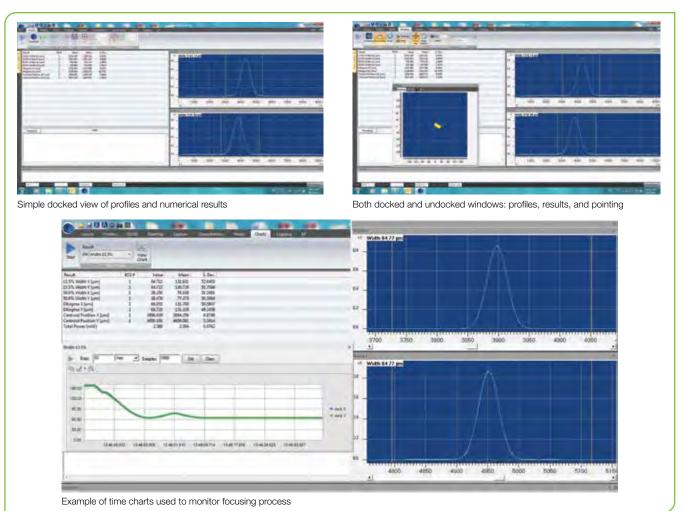
Benefits

- Measure any wavelength from UV to very far infrared (190nm to >100µm)
- Instantaneous real time display of results; beam found in less than 300ms and updated at up to 20Hz
- Waist location can be determined to within ±25µm due to the well-defined Z-axis datum plane of the NanoScan
- Measure pulsed and CW lasers
- For pulsed beams the pulse rate is measured and reported
- From as small as 7µm beams, can be measured directly with guaranteed accuracy and precision
- Additional high signal to noise ratio can be achieved with averaging
- Z-axis caustic measurements are available with built-in mechanical linear stage control
- M2 propagation ratio values available with simple M² Wizard included with the software.
- Any beam result can be charted and monitored over time
- Power levels can be monitored along with spatial measurements to determine if losses are introduced by beam adjustments
- Log results to text files for independent analysis
- Automate the system using optional ActiveX Automation commands, available with the PRO version software and scan heads Samples
 of automation programs included for Excel, VBA, LabView and Visual Basic.net


* The minimum frequency is a function of the beam size and the scan speed. This is a simple arithmetic relationship; there must be a sufficient number of pulses during the time that the slits sweep through the beam to generate a meaningful profile. Please refer to Photon's Application Note, Measuring Pulsed Beams with a Slit-Based Profiler.

3.4.1

NanoScan 2s Configurable User Interface


In addition to new hardware, the NanoScan 2s has an updated integrated software package for the Microsoft Windows Platform, which allows the user to display any of the results windows on one screen. The NanoScan 2s software comes in two versions, STD and PRO. The NanoScan 2s Pro version includes ActiveX automation for users who want to integrate the NanoScan into OEM systems or create their own user interface screens with C++, LabView, Excel or other OEM software packages.

See Your Beam As Never Before

📿 Ophir'

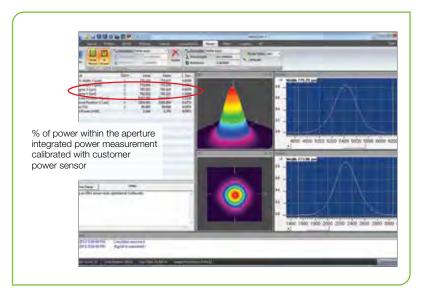
The new NanoScan 2s graphical user interface (GUI) allows the user to set the display screens to any appropriate configuration, displaying those that are of interest and hiding what is not. This means that you can have the information that you want to see, uncluttered by extraneous output, and you can have all the features you need, visible at once. The screens can be docked or floating with ribbon bars for the controls that can be visible or hidden as desired. This allows you to take advantage of a large, multi-monitor desk top or maximize the useful information on a small laptop display.

3.4.-

FOR LATEST UPDATES, PLEASE VISIT WWW.OPHIROPT.COM/PHOTONICS

Integrated Power Meter

The silicon and germanium detector equipped NanoScan 2s systems include an integrated 200mW power meter.


The scanhead comes with a quartz attenuator window that provides a uniform response across a broad wavelength range.

This is a relative power meter that has better than 1.5% correspondence when calibrated with a user-supplied power meter and used in the same configuration as calibrated.

The power meter screen in the software shows both the total power and the individual power in each of the beams being measured.

Available Detectors

The NanoScan 2s is available with silicon, germanium or pyroelectric detectors to cover the light spectrum from UV to very far infrared.

Apertures and Slits

The NanoScan 2s is available with a variety of apertures and slit sizes to allow for the accurate measurement of varying beam sizes. The slit width defines the minimum beam width that can be measured; due to convolution error, the slit should be no larger than $\frac{1}{4}$ the beam diameter to provide a $\pm 3\%$ accurate measurement. For this reason the minimum beam diameter measureable with the standard 5µm slit is 20µm. To measure beams smaller than 20µm it is necessary to use the small aperture 1.8µm slit instrument, providing a minimum beam diameter of ~8µm. Because these slits are so narrow, the maximum length limits the aperture to 3.5mm. Contrary to many people's beliefs, these smaller slits do not improve the resolution of the measurement, only the minimum size of the beam. Therefore, unless it is necessary to measure beams less than 20µm, one would be advised to stick with the 9mm/5µm configurations.

The Most Versatile and Flexible Beam Profiling System Available

With the available range of detectors, slit sizes and apertures the NanoScan 2s provides the maximum versatility in laser beam profiling. NanoScan 2s adds the convenience and portability of direct USB connectivity: no external controllers or power supplies required to operate the profiler. In addition the rotation mount has been redesigned to provide a stand for vertical operation, if desired. The mount can be positioned in one of two places. If vertical operation is desired the mount is positioned toward the back of the scanhead to expose the stand, which can be affixed to the optical table or stage. If standard horizontal operation is desired, then the rotation mount can be positioned in the forward configuration, maintaining the original length and size of the scanhead.

For Higher Powers, Teams up the NanoScan with the LBS-300s

In order to measure powers and energies above the limits of the NanoScan, an LBS-300s of the appropriate wavelength rang can be attached to the front of the NanoScan and measure powers up to 1000W and more.

The C mount thread of the LBS-300s mates with the C mount thread of the NanoScan. There are various models of the LBS-300s ranging in wavelength from 190nm up to 1550nm and beyond. Alternatively, the Stackable Beam Splitters can be attached to the NanoScan and used to attenuate high power beams.

Measured Beam Results

From 1989 through 1996, John Fleischer, founder and past President of Photon Inc., chaired the working laser beam width ISO/DIN committee that resulted in the ISO/DIN 11146 standard. The final approved standard, available in 13 languages. The standard governs profile measurements and analysis using scanning apertures, variable apertures, area sensors and detector arrays. NanoScan 2s measures spatial beam irradiance profiles using scanning slit techniques.

Results measured include:

• Beam Width at standard and user-definable clip levels, including $1/e^2$ and 4σ

- Centroid Position
- Peak Position
- Ellipticity
- Gaussian Fit
- Beam Divergence
- Beam Separation
- Pointing Stability
- ROI Power
- Total Power
- Pulsed Laser Repetition Rate

0		Result	ROI#	Value	Mean	S. Dev.
		13.5% Width A1 [µm]	1	863.328	864.612	0.7082
	The set of	13.5% Width A2 [µm]	1	876.317	875,622	0.9432
	NYY CONTAINS I MADE MADE CAME	D4sigma A1 [µm]	1	849.062	849.700	1.5084
	Langertransations a count state and	D4sigma A2 [um]	1	842.054	840.924	2.3751
	And Angland Aligner 1 404 Million 1004 And Angland State 2 1000 1000 1000 Angland State 1 1000 1000 1000 Angland State 1 1000 1000 1000 Angland State 1 1000 1000 1000	Centroid Position A1 [µm]	1	1.111	-0.133	0.5622
	March 2 621 021 000 March 2 825 924 002	Centroid Position A2 [um]	1	-1.730	0.275	1.2221
	Terrier 10 10 100	Peak Position A1 [µm]	1	-11.521	-19.890	5.6014
		Peak Position A2 [µm]	1	4.155	8.732	6.9860
		Peak A1 [cnts]	1	2812.438	2810.688	4.0486
		Peak A2 [cnts]	1	2687.898	2678.320	5.5879
		Ellipticity	1	0.806	0.807	0.0023
		Power [%]	1	99.994	99.979	0.027
A REAL PROPERTY OF THE PARTY OF		Total Power [mW]		1.202	1.203	0.000

Knowing pointing stability is a critical factor in laser performance

Example of the many measurements that can be made and the precision you can expect

M² Wizard

M-squared (M²) software Wizard is an interactive program for determining the "times diffraction limit" factor M² by the Rayleigh Method. The M² Wizard prompts and guides the user through a series of manual measurements and data entries required for calculating M². Used with a user-provided translation stage focusing lens and the M² Wizard in the NanoScan Analysis Software, the user can quickly and easily determine the times-diffraction propagation factor (M²) of a laser. For automated and automatic M² measurements the NanoModeScan option is required.

Pulsed Laser Beam Profiling

In addition to profiling CW laser beams, NanoScan can also profile pulsed laser beams with repetition rate in the 10kHz range and above. To enable the measurement of these pulsed lasers, the NanoScan profiler incorporates a "peak connect" algorithm and softwarecontrolled variable scan speed on all scanheads. The accuracy of the measurement generally depends on the laser beam spot size and the pulse-to-pulse repeatability of the laser. The NanoScan is ideal for measuring Q-switched lasers and lasers operating with pulse width modulation power (PWM) control. In the past few years, lasers with pico- and femtosecond pulse durations have begun to be used in many applications. Although these lasers add some additional complication to the measurement techniques, the NanoScan can also measure this class of laser.

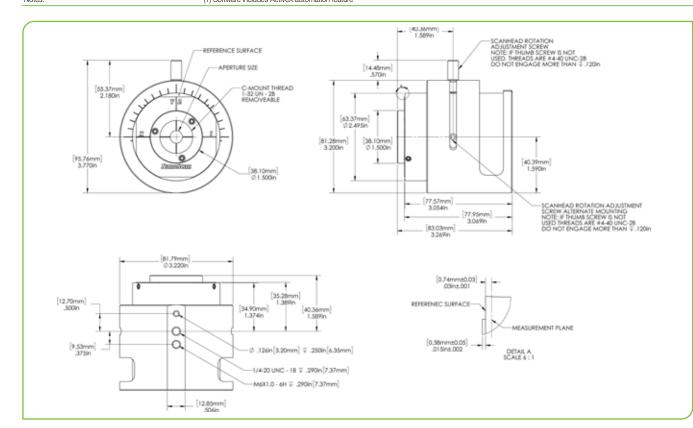
3.4.1.1 Software Comparison Chart

Use the Software specification from the existing NanoScan 2s data sheet

*Feature		NanoScan Standard	NanoScan Professional
Controls			
Source	ScanHead Select, Gain, Filter, Sampling Resolution, AutoFind, Rotation Frequency, Record Mode	•	•
Capture	Averaging, Rotation, Magnification, CW or Pulse Modes, Divergence, Gaussian Fit, Reference Position, Recompute	•	•
Regions of Interest (ROI)	Single or Multiple, Automatic or Manual, Colors	•	•
Profiles	Vertical Scale (1', 10', 100), Logarithmic Scale, Z & PAN (Automatic or Manual)	•	•
Computation: ISO 13694, ISO 11146	D _{sit} , (13.5%, 50% 2 User Selectable Clip Levels), D ₄₀ , Width ratios, Centroid Position, Peak Position, Centroid Separation, Peak Separation, Irradiance, Gaussian Fit, Ellipticity, Divergence, Total Power, Pulse Frequency, % power	•	٠
	Continuous, Rolling, Finite	•	•
Pointing	Centroid or Peak, Accumulate Mode, Beam Indicator, Graph Center, Colors	•	•
2D/3D	2D or 3D Mode, Linear or Logarithmic Scale, Resolution, Fill Contours Solid Surface, or Wireframe, Clip Level Colors	s, •	•
Charts	Chart Select, Parameter Select, Aperture Select, Update Rate, Start and Clear	•	•
Logging	File Path/Name, Delimiter, Update Rate	•	•
M ²	Rail Setup: Com Port and Length, Connect/Disconnect, Rail Control	•	•
Views			
Profiles	Displays Beam Profiles for each axis, with optional Gaussian Overlays	•	•
Results	Displays Values and Statistics for Selected results	•	•
Pointing	Displays the XY position of the Centroid or Peak for each ROI, with optional overlays and Accumulate Mode	•	•
Charts	Displays Time Charts for User-selected results	•	•
2D/3D	Displays pseudo 2D/3D Beam Profile	•	•
M ² Wizard	An interactive procedure for measuring M ² by the Rayleigh Method	•	•
File Saving			
NanoScan Data Files		•	•
Text Files		•	•
Data Logging			
Log to File		•	•
Reports			
NanoScan Report		•	•
Automation Interface			
ActiveX Automation Server			•
Minimum System Requirements			
PC computer running windows 7 (32/64	4) Laptop or Desktop		
A dual core processor CPU, 2GHz or be			
2GB of RAM			
1-USB 2.0 port available			
At least 250MB of free HDD space			
1400 x 900 display resolution or better			
Graphics card w/hardware accelerator			
DVD-ROM drive			
Microsoft compatible pointing devices(e	.g., mouse, trackball, etc)		
	is Software Manual for a complete description of all Software Features		

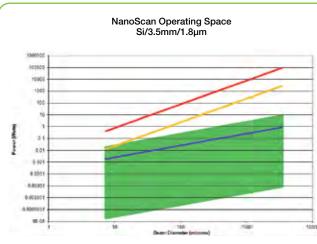
Professional Version Automation Interface

For customer who want to incorporate the NanoScan 2s into an automated procedure or to create a customized user interface, the PRO version scanheads include an ActiveX Automation Server that can be used by an Automation Client written in Visual Basic for Applications (VBA), C/C++ or by an application which supports ActiveX Automation, such as Microsoft Excel, Microsoft Word or National Instruments' LabVIEW. The software package include example of programs written in Excel and LabVIEW in the automation folder.


Specifications

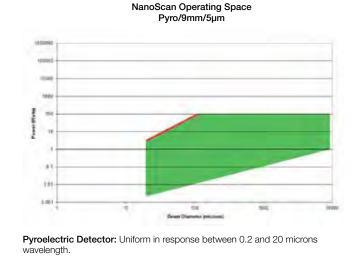
Model	Si/3.5/1.8µm	Si/9/5µm	Ge/3.5/1.8µm	Ge/9/5µm	Pyro/9/5µm	
Wavelengths	190-1100nm (1)	190-1100nm (1)	700-1800nm	700-1800nm	190-100µm	
Slit size	1.8µm	5µm	1.8µm	5µm	5µm	
Aperture size	3.5mm	9mm	3.5mm	9mm	9mm	
1/e ² Beam diameter range	7µm-~3mm	20µm-~6mm	7µm-~2.3mm	20µm-~6mm	20µm-~6mm	
Spatial sampling resolution			5.3nm-18.3µm			
Scan frequency			1.25, 2.5, 5, 10, 20	DHz		
Power reading			User calibrated			
Power aperture window			Metalized Quartz	z (200mW upper limit)	N/A	
Laser type			CW or Pulsed			
Operating range			See Operating Space	Charts		
Damage threshold			See Operating Space			
Rotation mount			Standard			
Bus interface		USB 2.0				
OS supported		Windows 7 (64) and Windows 10				
Signal digitization			16bit			
Maximum digitization clock			21.4MHz			
Maximum update rate			20Hz			
Data transfer			Bulk Transfer Mo	de		
On-board memory			64MB mDDR SDR	AM		
Weight			434g (15.3 ounce	es)		
Operating temperature			0-50°C			
Humidity			90%, non-condens			
Scanhead dimensions			76.8mm L x 63.5m			
Power			USB 2.0 Bus Powe	ered		
CPU clock			300MHz			
Memory clock			264MHz			
Scanning motor			Brushed DC, 4W r			
Compliance			CE, UKCA, China R	loHS		
Note:	(1) Between 950nm and 1	100nm, there might be a degradatio	n of system performance			

Ordering Information


Ophir[®]

Supported software	NanoScan Professional (1)		NanoScan Standard	
Model	Item	P/N	Item	P/N
Si/3.5/1.8µm	NS2s-Si/3.5/1.8-PRO	PH00464	NS2s-SI/3.5/1.8-STD	PH00456
Si/9/5µm	NS2s-Si/9/5-PRO	PH00465	NS2s-SI/9/5-STD	PH00457
Ge/3.5/1.8µm	NS2s-Ge/3.5/1.8-PRO	PH00467	NS2s-Ge/3.5/1.8-STD	PH00459
Ge/9/5μm	NS2s-Ge/9/5-PRO	PH00468	NS2s-Ge/9/5-STD	PH00460
Pyro/9/5µm	NS2s-Pyro/9/5-PRO	PH00470	NS2s-Pyro/9/5-STD	PH00462
oftware upgrades			· · · · ·	
ISv2 STD to NSv2 PRO Upgrade	the NanoScan automation	feature for those users w for Applications to embe	o the PRO version. This upgrade opens ranting to integrate or develop their own ed into such applications as LabView.	PH00417
lotes:	(1) Software includes ActiveX auto			

Typical NanoScan Operating Space Charts


Operating range is at peak sensitivity of detector. Operating space is NOT absolute. THESE CHARTS TO BE USED AS A GUIDE ONLY.

Silicon Detector: Responsivity varies with wavelength. Detects between 400-1100nm. Peak responsivity is 0.7 amps/watt at 980nm. Detector to detector responsivity variation can be as great as $\pm 20\%$.

PanoScan Operating Space Ge/3.5mm/1.8µm

Germanium Detector: Responsivity varies with wavelength. Detects between 800-1800nm. Peak responsivity is 1.05 amps/watt at 1550nm. Detector to detector responsivity variation can be as great as $\pm 20\%$.

Power: Average power in the laser beam.

Beam Diameter: Assumes a round beam. The operating point for an elliptic beam can be approximated by using the average diameter. For extremely elliptic beams (ratio >4:1), contact Spiricon.

Pulsed Operation (______): Upper limit of the operating space for pulsed laser measurements.

Black Coating Removed (______): Slits are blackened to reduce back reflections; blackening begins to vaporize near this line. Slits in pyro detectors are not blackened.

Slit Damage (______): Power density (watts/cm²) where one can begin to ablate and cut the slits.

Refer to Spiricon's Damage Threshold with High Power Laser Measurements document.

Left Boundary: The left boundary is 4 times the slit width, where slit convolution error becomes significant to the 5% level for reported $1/e^2$ diameter of a TEM₀₀ Gaussian beam.

Right Boundary: The right boundary is the instrument entrance aperture diameter, which determines the largest beam profile and diameter that can be measured. For a TEM₀₀ Gaussian beam the $1/e^2$ diameter needs to be $\leq 1/2$ the aperture diameter to measure and see the entire profile out to the tails. Similarly for a Flat-top distribution the $1/e^2$ diameter needs to be $\leq -95\%$ of the aperture diameter. To obtain any given clip level diameter for any beam (but not the full profile) $\sim 95\%$ of the aperture is useable.

3.5 Accessories for Beam Profiling

Introduction

Spiricon has the most extensive array of accessories for beam profiling existing. There are components for attenuating, filtering, beam splitting, magnifying, reducing and wavelength conversion. There are components for wavelengths from the deep UV to CO₂ wavelengths. Most of the components are modular so they can be mixed and matched with each other to solve almost any beam profiling requirement needed.

3.5.1 Neutral Density Attenuators/Filters

For almost all applications, the laser beam intensity is too high for the operating range of the CCD. Therefore ND glass attenuator filters are available to reduce the intensity to the proper level at the CCD. These filters are carefully designed not to affect beam quality or cause interference effects. One stackable ND1 filter and 2 ND2 filters are supplied standard with each c-mount camera.

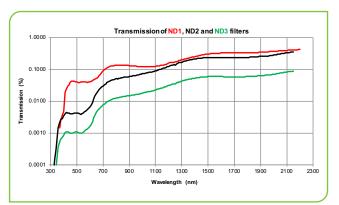
Model	ND Filters ND1 / ND2 / ND3	ATP-K Variable Attenuator	UV ND Filters	for 355nm
Nominal ND value	., _, _			Pass 355nm, blocks 532nm & 1064nm
Clear aperture	Ø19mm	Ø15mm	Ø20mm	Ø19mm
Damage threshold	~50W/cm ² / 1J/cm ² for ns pulses no distortion	100mW/mm no thermal lensing		5W/cm ² no distortion
Mounting	C-Mount Threads	C-Mount Threads	C-Mount Threads	C-Mount Threads

Stackable ND filters

The individual filters come in three versions, the ND1 filter in the red housing with ~10% transmission in the visible, the ND2 filter in the black housing with ~1% transmission and the ND3 filter in the green housing with ~0.1% transmission. The individual filters can be screwed on top of each other and thus stacked and also can be combined with beam splitters.

They are set at a small wedge angle in the housing so as not to cause interference effects.

ND1, ND2 and ND3 stackable filters


Stackable filter showing wedge

Transmission vs. Wavelength

These bulk-absorbing "neutral density" or ND filters do not have a flat response in attenuation vs. wavelength. See the graph for typical transmission vs. wavelength characteristics.

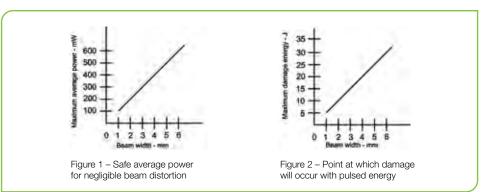
Specifications

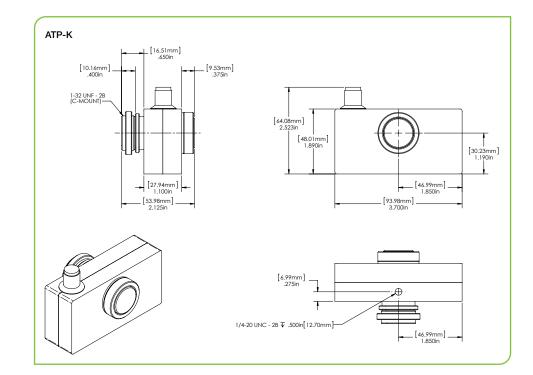
Model	ND1 Stackable Filter (Red housing)	 ND2 Stackable Filter (Black housing) 	ND3 Stackable Filter (Green housing)	
Nominal ND (vis)	1	2	3	
Transmission (1)	between 20% and 5%	between 7% and 0.5%	between 2% and 0.05%	
Clear Aperture	Ø19mm			
Damage threshold	~50W/cm ² / 1J/cm ²	for ns pulses		
Part number	SPZ08234 (2)	SPZ08235 ⁽³⁾	SPZ08253	
Notes:	 Depending on spectral range. One ND1 filter is included in Ophir cameras. Two ND2 filters are included in Ophir cameras. 			

ATP-K Variable Attenuator

This option makes beam profiling easy. The ATP-K attenuates your laser without ghost reflections ,fringes and light leaks. A knob-operated variable wedges attenuation of ND 1.7 -4.6 with fixed gray-glass attenuator with ND 2.8, provides total attenuation capability of ND 7.4.

The ATP-K is also designed to be used with the HP-series, high power attenuators and beam splitters. Both types of attenuators attach directly to the ATP-K via C-mount while a Beam profiler camera is attached form the opposite side. The ATP-K has simple reproducible attenuation settings, and has a wavelength range of 360 to 2500+ nm.


Figure 1 below shows the safe average power for negligible beam distortion from thermal lensing. Absorptive


filters, such as used in the ATP-K have an upper power limit of approximately 100mW per mm beam diameter. For pulsed beams, Figure 2 shows the damage threshold for energy where breakage of the glass wedge may occur. This is approximately 5J per mm beam diameter. For lasers with power or energy levels above this the first stage of attenuation will need to come from our line of high power reflective attenuators.

Specifications

Model	АТР-К
Maximum Power/Energy Handling (1)	100 mW/mm, 100 mJ total avg. Energy Damage threshold: 5J
Wavelength Range	360-2500+ nm Near flat response out to 1500nm
Attenuation Range (2)	Variable filters: ND = 1.7 to 4.6 Maximum ND 7.4 (with fixed 2.8 gray-glass attenuator)
Clear Aperture	15mm diameter
Dimensions	94 (W) x 28 (H) x 43 (D) mm
Thickness Tolerance	±0.25mm
Mounting	C-mount
Base Mount	14-20
Part number	PH00128

Vote: (1) Powerful laser sources may require additional attenuation prior to the beam's exposure to Model ATP-K. Additional attenuation usually is achieved by use of high-power laser mirr attenuators or clean, highquality quartz plates (recommended with slight wedge angles).
 (2) ND (optical density) = log (1/T) or T=10^(-ND) where T is the fraction of light transmitted. For example, an ND of 5 transmits 0.00001 or 0.001%.

UV ND Filters

This accessory can be used with any camera fitted with C- mount threads. Simply thread the attenuator assembly into the front of the camera and then slide the ND filter arrays to get the desired amount of attenuation. This device can be used with laser outputs from microwatts to Watts. Three filter holders are provided with two filters in each holder. Each filter in the holder provides for a different value of attenuation. To use, slide the desired holder into the housing slot. A click is felt when the filter is properly aligned with the beam. The holders provided will allow for attenuation of up to ND 6.

C-mount interface for universal application to our CCD and Pyroelectric cameras 190-380nm attenuation covers Excimer, Helium Cadmium, and the Nd:YAG UV harmonic laser wavelengths. Attenuation with these ND filters permits the best use of the dynamic range of a beam profiling camera.

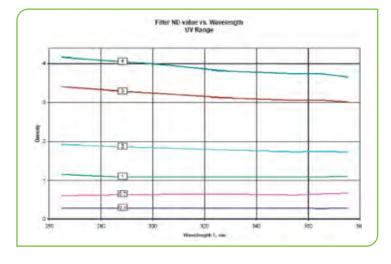
Attenuation range of 0.3 to 6.0 optical densities (ND).

Set consists of three slides with two filters in each slide.

The Six Filters include 0.3, 0.7, 1.0, 2.0, 3.0 and 4.0 optical densities.

Two filters can be employed at one time for 0.3 – 6.0 optical attenuation in 0.3 or 0.4 ND steps.

20mm clear aperture will not vignette any of our applicable camera sensors.


Damage threshold = $100W/cm^2$ for CW lasers and $20mJ/cm^2$ for nano-second pulse width lasers.

Additional Beam Splitters can be added for attenuation of high power UV lasers.

UV attenuation system uses high quality optics from the leader in laser beam diagnostics.

Specifications

Model	UV ND Filters
Nominal ND (UV)	0.3, 0.7, 1.0, 1.3, 1.7, 2.0, 2.3, 2.7, 3.0, 3.3, 3.7, 4.0, 4.3, 4.7, 5.0, 6.0
Aperture	Ø20mm
Damage threshold	100W/cm ² CW, 20mJ/cm ² , 10ns pulses
Filter material	Inconel
Part number	SP90228

Specialized Filters

There are also specialized filters available to eliminate extraneous wavelengths when measuring very short or very long wavelengths where the CCD cameras are not sensitive and the desired signal can get swamped by extraneous light of other wavelengths. These filters are as follows:

The 355nm filter for monitoring the 3rd harmonic of YAG. This filter transmits 355nm but blocks 532nm and 1064nm.

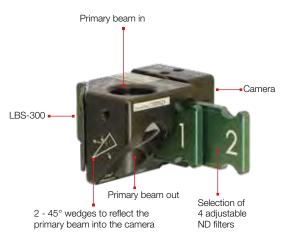
Specifications

Model	Filter for 355nm
Transmission	~ 60 at 355mn, zero at 532nm, and 5E-6 at 1064nm
Filter Thickness	4mm
Filter Spacing	8mm
Flatness	2 waves in the visible
Damage threshold	50W/cm ² / 0.6J/cm ²
Part number	SPZ08246

This filter has the same standard thread so it can be mixed with all the other components.

3.5.2 Beam Splitter + Neutral Density Filters Combo

The attenuators described before can provide a high degree of attenuation however, these neutral density attenuators cannot dissipate more than 5W or so. Therefore we often place beam splitters in front of the attenuators to reduce the intensity before the ND filters. These beam splitters are made of UV grade fused silica for use from 190 to 2500nm. Since they do not absorb light, they have a much higher power handling capacity than the ND attenuator/filters.

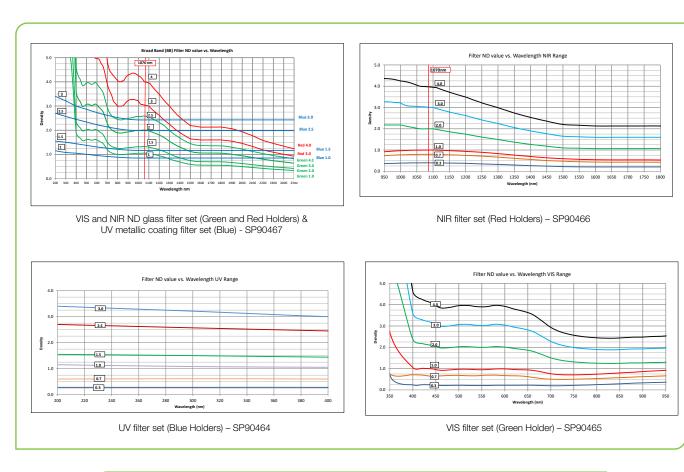


Model	LBS-300s	LBS-300HP-NIR	LBS -400	LBS-100
Wavelengths	multiple versions from 190-2500nm	980-1100nm	UV or 10.6µm	multiple versions; 400-700nm, 1064nm, 10.6µm
Reflection	0.01% of incident beam For reflectance Spectra see LBS-300 User Note	<0.0001%	0.01%	4% @ 400-900nm, 1% @1064nm, 0.5% or 5% @10.6μm
Nominal ND value	See spec sheet	0.4, 0.8, 1, 2, 3, 4	0.5, 1.0 in both filters	0.3, 0.7, 1, 2, 3, 4 for 300-700nm & 1064nm 30% & 60% for 10.6µm
Clear Aperture	Ø17.5mm	Ø15mm	Ø31.75mm	Ø19mm
Damage threshold	See spec sheet	See spec sheet	See spec sheet	See spec sheet
Mounting	C-Mount	C-Mount	Custom thread	C-Mount and Lab post mounted

LBS-300s Beam Splitters

The LBS-300s beam splitter attachment for C-mount, CS-mount, or Ophir mount cameras allow you to measure laser beams with diameters up to 15mm and powers ranging from 10mW to \sim 400W ⁽¹⁾. The beam sampler is designed so that the preferential polarization selection effect of a single wedge is cancelled out and the resulting beam image is polarization corrected to restore the polarization components of the original beam. The beam sampler operates by reflecting the incoming beam from the front surfaces of a pair of wedges through 90 degrees into the camera. Approximately 99% of the beam is transmitted through the beam sampler with 0.01% passed on to the camera. A set of adjustable ND filters are provided to make final intensity adjustments to the beam before it reaches the camera imager. If additional attenuation is needed, an external wedge may be mounted at the input port, however this 3rd wedge will cause polarization selectivity when the beam is significantly polarized different in the S and P planes. A 1.035-40 thread is provided behind each wedge along the axis of the output beam that can be used to directly mount accessories with 1" lens tubes such as beam dumps or even power and energy sensors to the LBS-300s.

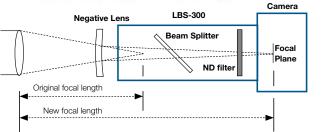
Ophir[®]


(1) For Gaussian beam diameter <1/2 the clear aperture and depending on ND filter and camera saturation limits the maximum power may be as high as 1000W.

Specifications

Model	LBS-300s-UV	LBS-300s-VIS	LBS-300s-NIR	LBS-300s-BB	
Wavelengths	266-355nm	400-950nm	950-1800nm	190-2500nm	
Wedge Material	UVFS	UVFS	UVFS	UVFS	
Wedge Coating	A/R ≤1%	AR ≤1%	AR ≤1%	No coating, 4% reflecti	on
Clear aperture	17.5mm	17.5mm	17.5mm	17.5mm	
Reflection (1)	0.01%	0.01%	0.01% (2)	0.16%	
Wedge ND value, each	ND ≥2	ND ≥2	ND ≥2	ND ~1.3	
Maximum allowable input to wedge	10MW/cm ² 5 J/cm ²	10MW/cm ² 5 J/cm ²	10MW/cm ² 5 J/cm ²	10MW/cm ² 20 J/cm ²	
ND Filters	Inconel	Bulk ND	Bulk ND	Combination of Incone	and Bulk NI
ND Values, nominal	0.3, 0.7, 1.0, 1.5, 2.0, 3.0 (Blu holders)	0.3, 0.7, 1.0, 2.0, 3.0, 4.0 (Grn holders)	0.4, 0.8, 1.0, 2.0, 3.0, 4.0 (Red holders)	See Broad Band (BB) o	hart below
Filter Slides	3	3	3	5	
Maximum allowable input to filter ⁽²⁾	100 W/cm ² CW 20mJ/cm ² , 10ns pulse	50 W/cm ² 1J/cm ² , 10ns pulse	50 W/cm ² 1J/cm ² , 10ns pulse	See UV, VIS and NIR s	pecifications
Part number	SP90464	SP90465	SP90466	SP90467	
Accessories					
Large C-mount Wedge Splitter	For additional attenuation add	this to the front end of the LBS	S-300. Good for 350-2000nm		SP90273
Beam Deflector Assembly	for 350-1200 nm only				SP90263
Beam Deflector Assembly	For 266 nm, high damage thr	eshold			SP90287
Beam Deflector Assembly	For 355 nm, high damage thr				SP90286
Beam Deflector Assembly	For 532 nm, high damage thr				SP90285
Beam Deflector Assembly	For 1064 nm, high damage th				SP90284
2" LT- Mount Extension Tube			noise on the camera, reduces		
3" LT- Mount Extension Tube			noise on the camera, reduces	intensity on ND, other uses	SP90574
LT To External C-Mount Adapter		Os - required with 2" and 3" ex			SP90576
LT To Internal C-Mount Adapter		mount - required with 2" and 3	3" extension tubes		SP90577
Notes:		6 and for 950nm reflectance is ~0.16% the filter glass of the filters. Distortion of	he beam may occur with average powe	er densities of 5W/cm² for beam s	ize 5mm,

3.5.2


Beam Extending Negative Lenses for LBS-300s

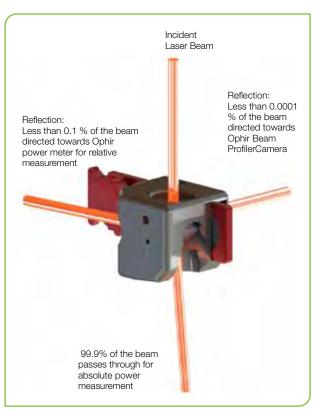
Sometimes we want to measure the focal spot of converging beam but the focal length of the system is not enough for the beam to go through the LBS and reach the camera focal plane.

Also, sometimes the focal spot is too small for the pixel spacing of the camera. The above problem can be solved by simply screwing a negative lens on top of the LBS and thus extending the focal spot as shown in the diagram.

Model	FSA-50Y	FSA-100Y	FSA-150Y
Negative lens focal length	~50mm	~100mm	~150mm
Use with original focal length	35-99mm	100-149mm	150-mm
Approx. image magnification	2.8	1.9	1.5
Part number	SP90187	SP90188	SP90190

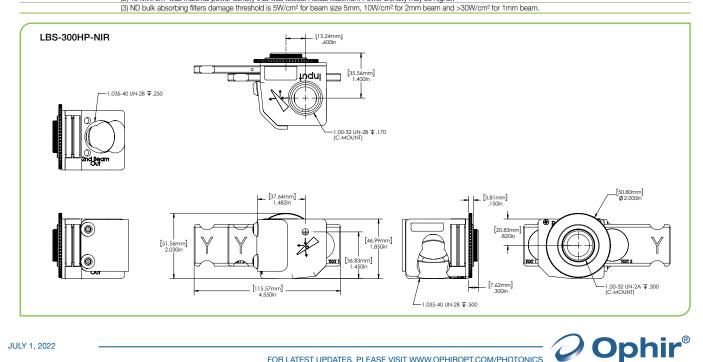
LBS-300HP-NIR Beam Splitters

Beam Splitter for High Power Lasers NIR


The LBS-300HP-NIR is a patent pending technology beam splitter for High Power lasers that allows measuring NIR (~1064nm) focused or collimated laser beam profiles up to 5kW or 15MW/cm².

The LBS-300HP-NIR operates by reflecting a fraction of the incoming beam through the front surface of each of a pair of orthogonally oriented wedges. Less than 0.0001% (1/106) of the beam is reflected towards the Ophir Beam Profiler Camera. This enables beam shape, focal spot, beam waist, M² of a high-power laser; up to 5kW or 15MW/cm².

Relative power can be measured by placing an Ophir power sensor after the first wedge, thereby measuring the laser beam after being reduced to 0.1% (1/10³).


99.9% of the laser beam passes through, ideal for absolute power measurement.

Each optical path through the LBS-300HP-NIR provides uniform attenuation of any beam shape (Gaussian, flat-top, doughnut, etc.) while preserving the polarization and overall profile of the incoming laser beam thus providing accurate sample of incident beam. A 1.035-40 thread is provided behind each wedge along the axis of the output beam. These can be used to directly mount accessories with 1" lens tubes such as beam dumps or power/energy sensors.

Specifications

Model	LBS-300HP-NIR	
Wavelengths (1)	1000-1100nm	
Wedge Material	UVFS	
Wedge Reflection (each)	<0.1%	
Surface Quality	λ/6	
Clear Aperture	15mm	
LBS-300HP-NIR Reflection	0.000025% - 0.0001% (1/106)	
Wedge ND value	≥3	
Maximum Laser Power Exposure	5 kW for up to 10 minutes	
Minimum Detectable Laser Power	100 mW	
Maximum Power Density (2), Energy Density	15MW/cm ² , 10J/cm ² at beam splitter	
3 x Bulk Filters ND (3) values, nominal	0.4, 0.8, 1.0, 2.0, 3.0, 4.0 (Red Holders)	
Part number	SP90540	
Suggested Add-Ons		
Item	Description	P/N
SP932U	Beam Profiler CMOS-based cameras	SP90606
SP920s	Beam Profiler CCD-based cameras	SP90549
Ge/9/5µm	Slit Based Beam Profilers, NanoScan 2s	PH00460
BD10K-W-V1 Beam Dump	Beam Dumps Up to 11kW Max Power, Water Cooled	7Z17205
Power Sensors	Compatible with most Ophir sensors	See catalog pages 67-74, 81
only to designated waveleng	-NIR is designated for 1000nm -1100nm, the real spectral range is significar (th and can't be guaranteed for out of the range wavelength. Red alignment I power density that was tested. Actual Maximum Power Density may be hio	

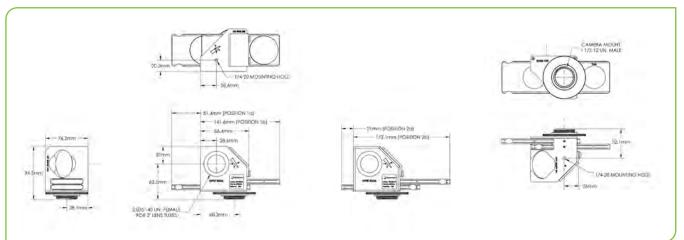
5.2 \sim

LBS-400 Beam Splitters

The LBS-400 beam sampler attachment for various large array cameras allow you to measure UV, NIR or IR wavelength laser beams with diameters up to 1 inch (25.4mm) and powers ranging from 10mW to ~500W⁽¹⁾. The beam sampler is designed so that the preferential polarization selection effect of a single wedge is cancelled out and the resulting beam image is polarization corrected to restore the polarization components of the original beam.

The beam sampler operates by reflecting the incoming beam from the front surfaces of a pair of wedges through 90 degrees into the camera. Approximately 99% of the beam is transmitted through each beam sampler with 0.01% passed on to the camera. A set of adjustable filters are provided to make final intensity adjustments to the beam before it reaches the camera imager.

(1) For Gaussian beam diameter <1/2 the clear aperture and depending on ND filter and camera saturation limits the maximum power may be as high as 1200W.


Specifications

🕖 Ophir®

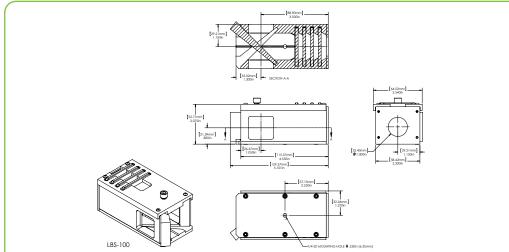
Model	LBS-400-UV	LBS-400-NIR	LBS-400-IR	
Wavelengths	193-355nm	900-1800nm	10.6µm	
Wedge Material	UVFS	BK7	ZnSe	
Wedge Coating	A/R ≤1.5%	A/R ≤1%	A/R ≤1%	
Clear Aperture	1.25 inch (31.75mm)	1.25 inch (31.75mm)	1.25 inch (31.75mm)	
Reflection	0.01%	0.01%	0.01%	
Wedge ND value (each)	ND ≥2	ND ≥2	ND ≥2	
Filter Material	Inconel	Bulk ND	CaF2	
Filter ND Values nominal	0.5, 1.0 in both filters	0.5, 1.0 in both filters	0.5, 1.0 in both filters	
Adjustable Filter Slides	2	2	2	
Filter Damage (1)	100 W/cm ² 20mJ/cm ² , 10ns pulse	50 W/cm ² 1J/cm ² , 10ns pulse	5W/cm ² 300 J/cm ² , 1ms pulse	
Part number	SP90351	SP90354	SP90349	
Accessories				
Every LBS-400 comes with a u	ser specified adaptor plate. Please cho	ose at time of purchase		

Every LDS-400 comes with a u	ser specified adaptor plate. Please choose at time of purchase	
LBS-400 C-Mount Adapter	Adaptor plate to mount C-Mount devices to LBS-400	SP90352
LBS-400 to L11059 Adapter	Adaptor plate to mount L11059 camera to LBS-400	SP90439
LBS-400 to Pyrocam [™] Adapter	Adaptor plate to mount Pyrocam IV camera to LBS-400	SP90510
LBS-400 to WB-I Adapter	Adaptor plate to mount WB-I to LBS-400	SP90572
Note:	(1) ND filters should be used at 5W/cm ² for beam size 5mm, 10W/cm ² for 2mm beam and >30W/cm ² for 1mm beam to avoid thermal lensing effects.	

N

5

LBS-100 Attenuator


The LBS-100 system that is not as compact as the LBS-300s above but has larger aperture, and has versions for longer wavelengths. The system contains the mounting frame, 1 wedge beam splitter and several attenuators. The exit end of the LBS-100 is standard C mount thread so all our cameras can be mounted to the frame. The wedge angle is 6.5 degrees to insure that the reflection from the rear side will not enter the camera. The optical elements are flat to 1/4 wave in the visible to ensure no distortion of the beam.

Specifications

Model	LBS-100	LBS-100 YAG	LBS-100 IR 0.5	LBS-100 IR	5.0
Wavelengths	400 - 700nm recommended, functional to 2600nm	1064nm	10.6µm	10.6µm	
Wedge Material	UVFS	UVFS	ZnSe	ZnSe	
Wedge Coating	No coating, 4% reflection	A/R ≤1%	A/R ≤0.5%	A/R ≤5%	
Clear Aperture	19mm	19mm	19mm	19mm	
Filter Material	Bulk ND	Bulk ND	CaF2	CaF2	
Filter ND Values/ Transmission	0.3, 0.7, 1.0, 2.0, 3.0, 4.0 ND at 632nm	0.3, 0.7, 1.0, 2.0, 3.0, 4.0 ND at 632nm	30% T for 3mm flat, 60% T for 1mm flat	30% T for 3m 60% T for 1m	
Filter Damage (1)	50W/cm ²	50W/cm ²	50W/cm ²	50W/cm ²	
Part number	SP90061	SP90057	SP90058	SP90059	
Accessories					
LBS-100 filter set	Replacement	filter set			SP90141
LBS-100 –YAG filter set	Replacement	filter set			SP90142
LBS-100 to L11059 adapter	Mount L1105	9 camera to LBS-100 attenuator			SP90196
LBS-100 to 4X beam reducer ad	apter This adapter e the 4X beam r	enables mounting of the LBS-100 reducer. The combined assembly	beam splitter/attenuator assen	nbly in front of ams in one unit.	SPZ17029
Note: (1) ND filters should	d be used at 5W/cm ² for beam size 5mm, 1	10W/cm ² for 2mm beam and >30W/cm ² f	or 1mm beam to avoid thermal lensing	effects.	

Model	Beam Tap I & II	Beam Tap I & II YAG	Stackable Beam Splitter	Single & Dual Front-Surface Beam Samplers
Wavelengths	400-700nm	1064nm	190-2000nm	200nm-2.5µm
Reflection	4% & 0.16% of incident beam	0.5% & 0.0025% of incident beam	5% & 0.25% of incident beam	0.057% @ 532nm
Clear aperture	Ø17.5mm	Ø17.5mm	Ø15mm	14mm x 14mm
Damage threshold	1MW/cm ² CW, or 1MJ/cm ² pulsed	1MW/cm ² CW, or 1MJ/cm ² pulsed	>5J/cm ²	100MW/cm ²
Mounting	C-Mount Threads	C-Mount Threads	C-Mount Threads	C-Mount Threads

Beam Tap I & II

- Dual surface reflector for equalizing S & P polarization
- The two planes of reflection are orthogonal

Single Surface Polarization Problems

A single surface reflection at 45° is often used to sample a laser beam for profile measurements or for monitoring power or energy. However, as shown on page 227, at 45° a single surface reflects the S polarization component at more than 10 times the reflection of the P component. Depending on the laser polarization content, or stability, this sampling can provide very misleading and unreliable measurements. (The BT-I-YAG has both surfaces A/R coated for 1064nm so the reflection for both polarizations is equal at 0.5%. At other wavelengths far from 1064nm the above discussion applies).

Equalizing S & P reflected polarization

Any arbitrary polarization component can be broken into equivalent S & P components. With complimentary sampling surfaces any given component gets reflected once as the S polarization, and the second time as the P polarization. Thus using 2 surfaces, the total reflected energy for all polarization components is the sum of the S reflectance and the P reflectance. This causes the sampled beam to have S & P components that are identical to the original beam.

Beam path through beam tap

The Beam Tap II uses two reflecting surfaces such that the two planes of reflection are orthogonal. The standard Beam Tap I rear surface is AR coated from 400-700nm.

This diagram shows the 6mm offset of the through beam that is created by the reflecting optic. The deflection angle of the output beam is less than 0.007 degrees. The rear surface of the flat is AR coated to maximize the throughput of the main beam. The standard Beam Tap II rear surface is AR coated for 400nm-700nm. The YAG version is AR coated for 1064nm on both surfaces.

Beam tap reflection vs wavelength

Shown is the Beam Tap II final sampled reflection vs. wavelength. As shown both the S & P reflection are nearly constant at 0.05% from the UV to the infrared.

(See figure 7 in the Beam Tap manual in our website)

Specifications

Model	BT-I	BT-II	BT-I-YAG	BT-II-YAG	
Wavelengths	400-700nm	400-700nm	1064nm	1064nm	
Surface	Single surface, 1 cube	Dual surface, 2 cubes	Single surface, 1 cube	Dual surface, 2 cubes	
Optical Material	UVFS	UVFS	BK7	BK7	
Reflection	4%	0.16%	0.5%	0.0025%	
Damage threshold	1MW/cm ² CW, or 1MJ/cm ² pulsed				
Part number	SP90135	SP90133	SP90173	SP90172	

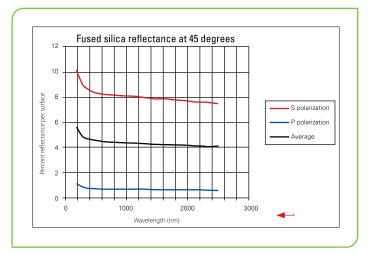
Stackable Beam Splitters

The stackable beam splitters are designed for maximum modularity and shortest beam path. They are compatible with almost all of our cameras having the standard C mount thread and can mount either to other attenuators or to the camera itself. Each beam splitter reflects $\leq 6\%$ of the incoming beam and allows approximately $\geq 94\%$ of the beam to pass directly through. By stacking 2 splitters $\leq 6\%$ of $\leq 6\%$ or 0.36\% of the original beam intensity is directed into the camera. The beam splitters are mounted at 45 degree over the fixed or variable attenuators with a simple fastening ring and can be oriented in any direction with the beam coming from right, left, up, down, or front. The Beam Splitters will operate for wavelengths from 193nm - 2500nm. Damage threshold is $>5J/cm^2$ for 10ns pulses.

An optional Ø30mm clear aperture splitter allows for larger diameter incoming beams. Caution: Beam convergence and power density must be known at the imager so you don't overflow the imager size and maximum power density at the imager.

A different set of stackable beam splitters are specifically coated for optimization at 1064nm. Each beam splitter reduces the intensity to 1% of the input Beam. 2 stacked splitters will produce a sampling Beam with 0.01% intensity of the original beam.

The wedge angle of 10 degrees insures that only the reflection from the front surface will appear on the camera with no double images. The user must insure that there are beam stops for the transmitted and reflected beams.


Note that if possible, the user should use an even number of beam splitters so as to cancel any possible polarization effects.

For converging beams, a larger aperture splitter can be used either by itself or stacked (as shown)

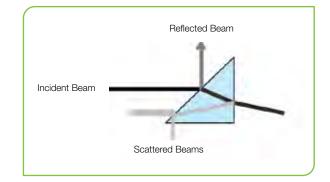
Specifications

Model	1st Wedge Splitter (BB)	2nd Wedge Splitter (BB)	2nd Wedge Splitter, large aperture (BB)	1st Wedge Splitter (NIR)	2nd Wedge Splitter (NIR)
Wavelengths	193 - 2500nm	193 - 2500nm	193 - 2500nm	1064nm	1064nm
Material	UVFS	UVFS	UVFS	UVFS Coated 1064nm	UVFS Coated 1064nm
Clear Aperture	Ø15mm	Ø15mm	Ø30mm	Ø15mm	Ø15mm
Reflection	≤6%	≤6%	≤6%	≤1%	≤1%
Path length to CCD with 3 screw-on ND filters	60mm	93mm	60mm	60mm	93mm
Part number	SPZ17015	SPZ17026	SPZ17025	SPZ17031	SPZ170132

5.3

Single and Dual Prism Front-Surface Beam Samplers

The Prism Front-Surface Beam Sampler (PFSA) is a C-mount fixture housing a UV-Grade Fused Silica right angle prism, used for sampling the front surface reflection for high power/energy beam-profiling applications. Reflection at nominal incidence of 45° is polarization and wavelength dependent, with 532nm s-polarization reflected at 8.27%, and p-polarization at 0.68%.


The system is available as either a single prism (PFSA) or dual orthogonal prism (DPFSA) unit. The dual orthogonal prism configuration results in polarization independent reflection of 0.057% at 532nm. Other filters and attenuators can be attached using the C-mount female threads at the input end. The use of a right-angle prism to sample the incident beam guarantees that any scattered secondary beams do not interfere with measurement, as shown in the sketch.

Dual Prism Front Surface Sampler Two Single Prism Front Surface Samplers mounted on a ATP-K Attenuator

Specifications

Model	PFSA		DPFSA	
Wavelengths	200nm to ~2.5µm		200nm to ~2.5µm	
Optical Material	UV-Grade Fused Silica		UV-Grade Fused Silica	
Prism	Single		Dual	
Surface Quality	20-10		20-10	
Surface Accuracy	λ/10		λ/10	
Angle of Incidence	45°		45°	
Clear Aperture	14mm x 14mm		14mm x 14mm	
Reflection at λ (nm)	P- Polarization	S- Polarization	P- Polarization	S- Polarization
248.3	0.88%	9.40%	0.88%	9.40%
351.1	0.75%	8.65%	0.75%	8.65%
532	0.68%	8.27%	0.68%	8.27%
1064	0.64%	8.01%	0.64%	8.01%
Laser Damage Threshold	CW> 100MW/cm ²		CW> 100MW/cm ²	
Dimensions	38.1mm x 32.3mm x 29	.5mm	44.5mm x 40mm x 32.5mm	
Output Mounting with Brass Lock Ring	C-Mount Male (1"-32 Th	read Male)	C-Mount Male (1"-32 Th	nread Male)
Input Mounting	C-Mount Female (1"-32	C-Mount Female (1"-32 Thread Female)		Thread Female)
Part number	PH00052		PH00053	

3.5.4 Beam Expanders Microscope Objectives

Model	Beam Expander	4X Beam Expander with UV Converter
Wavelengths	4X : 340-1800nm 6X, 12X, 22X: 530-1100nm	193nm-360nm
Beam Size Change	4X, 6X, 12X, 22X	4X Expansion
Clear aperture	1/4 the size of the CCD imager	
Mounting	C or CS Mount Threads	

Beam Expander

Beam expanders are designed to work with C-mount threaded cameras that have 4.5mm imager back focal spacing or with CS (12.5mm) back focal spacing. The 4X beam expander is an expanding telescope that images the beam as it looks at 8mm from the end of the expander onto the CCD while enlarging the image 4X. In addition to the 4X beam expander, other microscope objectives are available for expanding the beam even more. There are objectives for 6X, 12X, and 22X expansion. The various expanders allow the use of our 2% and 10% filters as well as the variable attenuator so as to accommodate the camera to a wide range of source intensities.

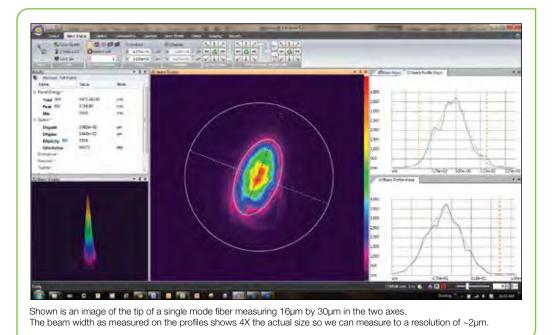
With a camera having 4.4µm pixel spacing using the beam expander, the effective resolution can be as good as 0.5µm. The object plane that is imaged onto the CCD is located several mm in front of the assembly so even hard to get to focal spots and other small images are easy to image. The beam expanders are designed to accommodate up to 3 screw on filters or a variable attenuator behind them so a wide range of intensities can be accommodated.

For intensities too large to be accommodated by just filters, beam splitters are available to reduce the intensity before the beam expander. The beam expander is primarily intended for nonparallel beams such as focal spots and fiber tips. If small parallel beams are imaged, interference effects may occur.

The 4X Beam expander can also be fitted with a UV converter plate at its object plane so that you can look at small beams in Wavelengths 193-360nm and expand them 4X.

Camera with 4X beam Expander (SPZ12022)

Camera with 12X Expanding Microscope Objective (SPZ08259)


Specifications

Model	4X	6X	12X	22X	
Wavelengths	340 - 1800nm	530 - 1100nm	530 - 1100nm	530 - 1100nm	
Distance from lens barrel to focus	8mm	16.7mm	10.7mm	3.3mm	
Distance from focus to 1st beam splitter	25mm	13mm	12mm	20mm	
Distance of closest approach to focus with 2 beam splitter	85mm	73mm	72mm	80mm	
Total length of assembly (without beam splitter)	50mm	107mm	101mm	102mm	
Total length of assembly (With 2 beam splitter)	122mm	153mm	133mm	133mm	
Part number	SPZ17022	SPZ08257	SPZ08259	SPZ08260	
Accessories	-	-			
Spacer Set Spacer set fo	r connecting microscope objecti	ve 6X/ 12X/ 22X to 4.5mm, CS	mount cameras	SP	Z08261
	gle wedge beam splitter which r ange 190 – 2500nm. Introduces		educes beam intensity by ~20 tir ect plane	nes. SP	Z17027
Additional beam splitter Additional beam	am splitter to mount to 1st beam	n splitter	•	SP	Z17026

3.5.4

4X Beam Expander with UV converter

The UV converter is a UV sensitive fluorescent plate that can be mounted over the 4X Beam Expander.

The plate is positioned at the object plane of the 4X beam expander, 8 mm in front of the unit. When UV light at 193-360nm hits the plate, it absorbs the UV and re-emits visible light proportionate to the incident UV light. This light pattern is then expanded 4 times and imaged onto the imaged onto the C-mount camera.

Camera with 4X Beam Expander and UV Image Converter

Specifications

Model	4X Beam Expander with UV converter
Beam Reduction	4X expansion ±2% with included correction factor
Wavelengths	193 - 360nm
Resolution	15μm x 15μm;
Minimum signal	~50µJ/cm ²
Saturation intensity	~30mJ/ cm ² at 193nm, ~15mJ/cm ² at 248nm 20 times greater with optional beam splitter
Effective Aperture	1/4 the size of the CCD dimensions
Damage threshold	0.1J/cm ² w/o beam splitter, 2J/cm ² w/ beam splitter
Dimensions	Ø31mm dia x 120mm length
Part number	SPZ17022 + SPZ17019

3.5.4

3.5.5 Beam Reducers

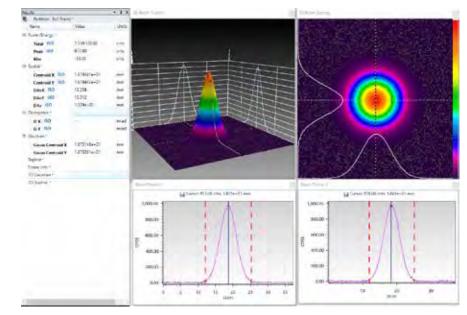
4X Reimaging Beam Reducer

The 4X Beam Reducer is an imaging system that images the plane 30cm in front of the reducer onto the camera CCD sensor while reducing the size 4 times and inverting it. The beam reducer uses the 3 screw on attenuators provided with the camera. Since the intensity of a beam after reduction will be increased by 4x4=16 times, it is advisable to attenuate the beam more than you would without beam reduction. This can be done with additional external beam splitters and attenuators which are available (see ordering information).

Note that the custom designed beam reducer gives better image quality than tapered fibers since it does not introduce graininess or uneven pixel response. Also the image distortion of \sim 1% is considerably lower than with most tapered fibers. The beam reducer is not compatible with CS mount cameras.

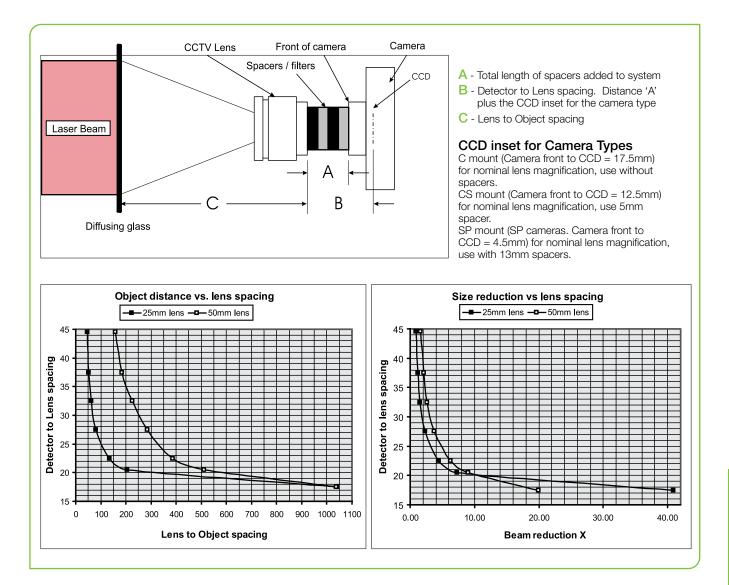
Specifications

Model	4X beam reducer	
Wavelengths	360-1100nm	
Antireflection Coating	Antireflection coating optimized for 1064nm and 532nm	
Beam reduction Accuracy	± 3%	
Size	Ø60 mm dia x 94mm length	
Aperture	50mm	
Maximum Beam Size	SP920s: 28x21.2mm	
Distortion of Beam	Less than 1% over 80% of diameter	
Damage Threshold	30mJ per pulse for nanosecond pulses	
Part number	SPZ17017	
Accessories		
LBS-100 to 4X beam reducer adapter	This adapter enables mounting of the LBS-100 beam splitter / attenuator assembly in front of the 4X beam reducer. The combined assembly can image large high power beams in one unit	SPZ17029
Beam splitter large wedge	Wedge, UVFS, 44X32 mm, uncoated wedge housing mounts to 1/4" thread, 1/2" diameter laboratory rod (not included)	SPZ17018


The 4X beam reducer can be combined with the LBS-100/ LBS- 300s/ LBS- 400 beam splitter/attenuator system to attenuate higher power beams before reducing them in size

Optional large wedge beam splitter (SPZ17018)

LBS-100 (SPZ17029) + LBS-100 combined with 4X beam reducer (SP90061+SPZ17017)



Shown is an image of a laser with beam diameter of 13mm. As can be seen, it is easily seen with the SP920s camera with the 4X beam reducer.

3.5.6 CCTV lens for front imaging through glass or reflected surface

When direct imaging in front of the camera, for example, an image projected onto a diffusing surface, such as a ground glass plate, it is necessary to reduce the image so that it completely fits onto the CCD chip surface. The 25mm and 50mm CCTV lenses image an object from a given plane in front of the lens onto the CCD while reducing the size. The lens can image such objects at distances from about 10cm in front of the lens (20cm for the 50mm lens) to 1 meter or more depending on the distance from the lens to the camera. The distance from lens to camera depends on the camera type and spacers placed between the lens and the camera.

Ordering Information

Item	Description	P/N
25mm focal length CCTV lens kit	25mm focal length lens assembly with locking iris and focus adjustment. Includes 1 ea - 8mm spacer and 2 ea -5mm spacers	SP90085
50mm focal length CCTV lens kit	Same as above except 50mm focal length lens	SP90038
4mm spacer	Screw on spacer to add 4mm spacing to optical system	SPG01698
5mm spacer	Screw on spacer to add 5mm spacing to optical system	SPG02106
8mm spacer	Screw on spacer to add 8mm spacing to optical system	SPG02067

3.5.6

3.5.7 WB-I: Wide Beam Imager

The Ophir Wide Beam Imager: **WB-I** a compact, calibrated accessory for beam profiling cameras, provides a way to measure both size and power distribution of a divergent and large diameter beam coming from sources such as VCSEL, LED as well as parallel beams. It employs a 45mm diffusive plate onto which the beam from the light source is projected. This image is then reduced by 8 times and is reimaged onto the camera focal plane.

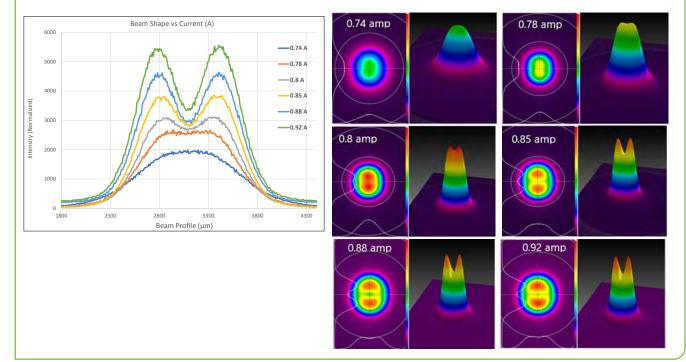
VCSELs, LEDs and fiber lasers are used in many sensitive applications. To guarantee the high quality of the devices, it is essential to analyze the beam profile, but those wide, divergent beams place specific requirements on the measurement system:

- The apertures of conventional beam profilers are too small to collect the entire spot of large or divergent light sources.
- Diverging beams cannot be accurately measured with regular detectors because the quantum efficiency of the detector is highly dependent on the angle of incidence.

Compact, ruggedized, and portable design of WB-I enables on-site service of beam profiling of VCSELs and LED systems at the customer site as well as operation at production lines and R&D labs.

- Divergent beams measurement significantly improved due to the possibility of up to 70° angle measurement, compared to 15° of standard beam profiler sensors.
- WB-I accessory, together with the camera and the BeamGage software, provides real-time beam shape analysis and visualization of changes of the beam shape due to different currents can be easily detected.
- Variable attenuation, via set of interchangeable filters or iris enables measuring wide range of light sources of different emitting powers.

Designated for R&D, Production and Service in following fields: Data Telecommunication, Automotive, Remote sensing, Face and gesture recognition


Typical light sources: VCSELs, LED, Wide laser beams, fibers

Typical measurements: Far Field energy distribution, Divergence, LIV sweep test VCSELs (beam profile vs current (A)) The WB-I accessory comes in 2 versions: UV-VIS-NIR (350-1100 nm) or SWIR (900-1700nm) designated for Eye- Safe, IR applications.

The WB- I is purchased without camera. For a complete solution that includes BeamGage Professional imaging and analysis software, high-resolution camera can be added.

Application example:

VCSEL energy distribution directly depends on parameters such as current, pulse width and repetition rate and temperature of the device. Therefore, it is essential to measure the angle distribution of VCSELs at various stages of the manufacturing process as well as in R&D and field service. VCSEL behavior on the LIV sweep test: VCSELs are in a so called "LED mode" when there is only a low current applied. Once the current applied to the VCSEL rises, its beam profile changes to "Laser mode":

236 JULY 1, 2022

3.5.

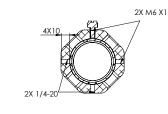
WB-I VIS:

- UV-VIS-NIR (350-1100nm) Wavelengths
- Attenuation by accompanied ND filters (ND1 and ND3) and by variable iris
- Operates with Ophir standard SP932U camera (purchased separately)

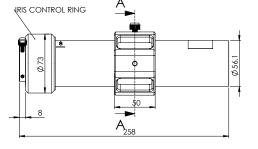
WB-I SWIR:

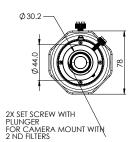
- SWIR (900-1700nm) Wavelengths
- Attenuation by variable iris control (ND filters not needed)
- Operates with Ophir InGaAs SP1203 camera (purchased separately)

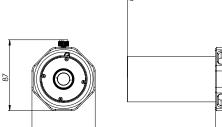
Specifications

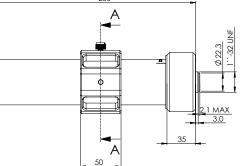


Model	Wide Beam Imager VIS	Wide Beam Imager SWIR		
Wavelengths	350 ⁽¹⁾ -1100nm	900-1700nm		
Active area (2)	Ø45mm	Ø45mm		
Beam sizes (2), (3)	10mm– 45mm	10mm– 45mm		
Angle of incidence	<70°	<70°		
Minimum detail (4), (5)	0.5mm	0.5mm		
Lowest measurable signal	100µW/cm ^{2 (6)}	3µW/cm ² (With Iris fully opened at 1550nm)		
Maximum power exposure CW (7)	200W unlimited, 1000W for 1 minute	50W unlimited time		
Maximum energy exposure (8)	For ns pulses 1.5J/cm ²	N/A		
Imager recess supported	4.5mm	17.5 mm (C-Mount)		
Camera model recommended	SP932U	SP1203		
Dimensions	L=265mm X Ø57mm (Ø73mm Iris control)	L=265mm X Ø57mm (Ø73mm Iris control)		
Weight (with support)	0.6 kg (0.8 kg)	0.6 kg (0.8 kg)		
Part number	SP90612	SP90605		
Notes:	(1) Camera response down to 350nm. Below this, flourescence of screen will be im	laged		
	(2) Limited to 43 mm in Y direction by camera sensor			
	(3) 5mm possible with reduced accuracy			
	(4) For low contrast artefacts, due to blur effect (~0.8mm)			
(5) Small diameter evaluation error is $< 5\%$, decreases proportionally with increased diameter				
(6) With two ND1 filters mounted on camera				
	(7) For WB-I VIS: 20% is backward scattered, WB-I SWIR: 50% is backward scattered			
	(8) At 1.064µm. For wavelengths below 0.9µm, derate to 40% of above , for <0.4µ	m to 20%		

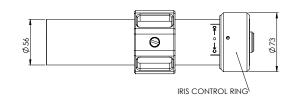


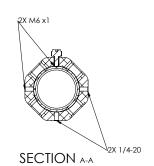

Wide Beam Imager SWIR


Ophir[®]



SECTION A-A

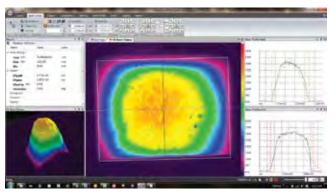




250

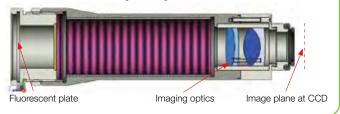
Beam Analysis

3.5.8 Imaging UV lasers


Integral Reimaging UV Image Converters

The UV image converters are fluorescent plates that convert UV radiation that is poorly imaged by silicon cameras into visible light that is then imaged onto the CCD of the camera. These fluorescent plates are specially designed for UV conversion and have a high light output, wide linear dynamic range and high damage threshold.

There are 3 versions available:


- 1. The 4X UV image converter is a screw on telescope for large beams that converts to visible and then images onto the CCD while reducing the beam size 4X.
- 2. The 4X expander with UV converter converts 193 360nm to visible and images a beam enlarged 4X onto the CCD.
- 3. The 1:1 UV image converter is a crew on telescope that convert 1:1 UV image to visible and images the beam onto the CCD without changing the size, fits 4.5mm recess and CS cameras.

All of the above imagers allow a beam splitter to be mounted at 45 deg angle in front of the imager so as to allow imaging of higher power/energy beams.

Shown here is a profile of a 355nm UV laser. The beam is converted to a visible wavelength, reduced in size and imaged by the beam profiling camera

Cross section of 4X reducing UV image Converter

Specifications

Model	4X UV Image Reducing Converter	1X UV Image Converter	4X Beam Expander with UV	converter	
Beam Reduction	4X reduction ±2% with included correction factor	1:1 imaging ±2% with included correction factor	4X expansion ±2% with includ correction factor	ed	
Resolution	50µm x 50µm	35µm x 35µm	15µm x 15µm		
Wavelengths	193-360nm				
Minimum signal	~1µJ/cm ² with blank filter				
Saturation intensity	~30mJ/cm ² at 193nm, ~15mJ/cm ² at 248nm with included filter 20 times above values with optional beam splitter	~15mJ/cm ² at 193nm, ~20mJ/cm ² at 248nm with included filter, 20 times greater with optional beam splitter	~30mJ/cm ² at 193nm, ~15m. 248nm 20 times above values beam splitter		
Effective Aperture	Ø30mm but effective beam size is limited to 4X CCD dimensions	Ø18mm but effective beam size is limited to CCD dimensions	1/4 the size of the CCD dimen	isions	
Damage threshold	100W/cm ² or 2J/cm ² with beam splitter				
Dimensions	Ø50mm dia x 185mm length	Ø31mm dia x 120mm length	Ø29mm dia x 69mm length		
Part number	SPZ17024	SPZ17023	SPZ17022 + SPZ17019		
Accessories					
1st Wedge Splitter (BB)	45 degree wedged beam splitter for 1X UV ima For beam intensities of up to 300mJ/cm ² at 193		nverter by ~20X.	SPZ17015	
Beam splitter for 4X reducing UV image converter	45 degree wedged beam splitter to reduce intensities by ~20X. For beam intensities of up to 300mJ/cm ² at 193nm.				
20mm diameter UV imaging plate	Ø20mm diameter UV image conversion plate only. For customers that have own imaging system. Converts UV image to visible. For beam intensities 50µJ/cm ² to 10mJ/cm ² .				
30mm diameter UV imaging plate	Ø30mm diameter UV image conversion plate only. For customers that have own imaging system. Converts UV image to visible. For beam intensities 50µJ/cm ² to 10mJ/cm ² .				
50mm X 50mm UV imaging plate	50X50mm diameter UV image conversion plate visible. For beam intensities 1mJ/cm ² to 20mJ/d		stem. Converts UV image to	SP90082	

Beam Splitter

(SPZ17023 + SPZ17015)

as mounted on camera

(SPZ17024)

3.5.9 Integrated Solutions

Ophir has an unparalleled collection of cameras, beam splitters/attenuators, beam expanders, beam reducers, UV to visible light converters, and other components that allow you to profile almost any beam desired. You can profile powers up to thousands of watts using our beam attenuators. You can profile a very wide range of wavelengths from far UV to far IR. You can profile a focal spot of a converging beam or a diverging beam.

We recommend using "Beam Profiler Finder" to find the optimized configuration that best meets your specific needs: **www.ophiropt.com/laser--measurement/beam-profiler-finder** or consult Ophir representative.

Ophir provides adapters that allow you to easily attach and align these devices to each other as shown below.

Examples

1. LBS-300s mounted to a 4X beam expander, connected via ND filters to a camera: for measuring of spots that are smaller than 44um

2. LBS-400 mounted to Wide Beam Imager with camera: for large or diverging beams, requiring attenuation or in case of no space to place the WB-I.

Adapters / spacers that are needed to connect various components together. When blank, no connection or not recommended to connect.

P/N					St	ackable beam split	ters
		LBS-100	LBS-300s	LBS-400	SPZ17027 + SPZ17025	SPZ17015 + SPZ17025	SPZ17015 + SPZ17026
SPZ17022	4X beam expander		SP90567 + SPG01698		Direct connection		
SPZ17022+ SPZ17019	4X beam expander UV converter		Direct connection			Direct connection	
SPZ08257	6X beam expander		SP90567 + 4ea. SPG02067			SP90567+ 2ea. SPG02067	
SPZ08259	12X beam expander		SP90567 + 3ea. SPG02067			SP90567	
SPZ08260	22X beam expander		SP90567			SP90567	
SPZ17017	4X beam reducer	SPZ17029	SP90569	SP90570			SP90569
SPZ17024	4X beam reducer UV converter		SP90569	SP90570			SP90569
SPZ17023	1X UV converter		Direct connection				Direct connection
SP90320	L11059		SP90571	SP90439			
SP90553	WB-I			SP90572			
SP90405/415	Pyrocam IIIHR		Supplied with Pyrocam	SP90510			Supplied with Pyrocam
SP90404/414	Pyrocam IV		SP90573	SP90510			SP90573
PH00457/459/460/462/ 464/465/467/468/470	Nanoscan	Direct connection	Direct connection			Direct connection	
	All C-Mount thread cameras	Direct connection	Direct connection	SP90352		Direct connection	

3.5.10 Optical Camera Trigger

The Optical Camera Trigger is an optical sensor that detects pulsed light sources and generates outputs to trigger a camera. The front aperture of the Optical Trigger must be directed at a light source that provides the necessary properties for trigger activation (e.g. a laser flash lamp, a pick-off source from the main laser beam, or similar). The light source may be a direct or indirect pulsed waveform.

The Optical Trigger system is supplied with a C-Mount adapter, a 1/4-20 adapter, M6-1.0 adapter, or Through-Hole adapter options which allows attachment of the Optical Triger in a multitude of mounting configurations. One trigger cable and one mount option comes with the photodiode trigger. Specify one of each at time of order. See user guide for camera specific mounting options.

Specifications

Model		Photodiode Trigger, Si, 1100	Photodiode Trigger, InGaAs, 1800	
Detector		Si	Si/InGaAs	
Mininum p	oulse width	1µs	1µs	
Optical Th	nreshold Wavelength			
200r	ım	10.0 1µJ	N/A	
633r	ım	3.5 1µJ	4 1µJ	
1064	1nm	5 1µĴ	10.0 1µJ	
1550	Dnm	N/A	4 1µJ	
Complian	се	CE, UKCA, China RoHS	CE, UKCA, China RoHS	
Part num	lber	SP90408	SP90409	
Accesso	ries			
With eith	er trigger above you must specify 1 ca	able and 1 mount at time of order		
Cable	Photodiode Trigger Cable for SP300), 6ft		SP90430
Cable	Photodiode Trigger Cable for SP907			SP90431
Cable	Photodiode Trigger Cable to SMA for	or LT665, Pyrocam™ IIIHR & IV, SP1203, SP1201,	6ft	SP90432
Cable	Photodiode Trigger Cable to BNC for	or SP920G, SP920s, L11059, Xeva, Pyrocam III, 6f	t	SP90433
Mount	1/4-20 Mount, Photodiode Trigger			SP90434
Mount	M6 X 1.0 Mount. Photodiode Trigger			SP90435
Mount	Thru Hole Mount, Photodiode Trigger			SP90436
Mount	C-Mount, Photodiode Trigger			

[31.70]

1.248

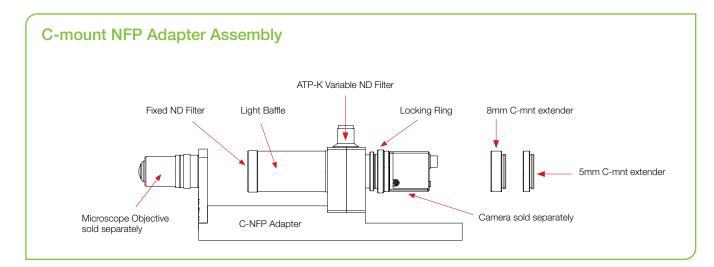
[16.13] .635

[36.75] 1.447 5.97

4X 2-56 UNC - 2B ↓ .110[2.79]

[28.45] 1.120

> [9.65] Ø.380 B.C



Camera Based Near-Field Profiler

- Allows measurement of beams normally too small for camera profiler
- Expands beam to reduce power/energy density
- Provides near-field profile of fibers, LD junctions, and other small sources
- Can be used to measure tightly focused beam with camera and attenuation
- Nominal 10X, 20X, 40X, 60X Beam expansion available
- Easily calibrated to provide absolute measurement values
- Built-in continuously variable attenuation
- C-mount for attachment to any silicon CCD camera profiler
- Camera and BeamGage software purchased separately

Near field profiling can also be used with camera profilers to analyze small beams, and involves a microscope objective lens to image the beam onto a camera detector array. This technique expands the measurement range of the camera to include smaller beams, which could not be ordinarily measured due to the pixel size of the detector array. Near field profiling is performed in fiber and waveguide analysis, lens characterization, and other applications where beams 50 microns or smaller are analyzed. While there are more accurate techniques to measure these beam sizes, the camera provides two-dimensional information that cannot always be obtained through knife-edge or scanning slit methods. This camera accessory includes base plate for mounting camera and Microscope Objective, ATP-K variable attenuator, 50mm C-Mount and an 8mm and 5mm spacer. User selectable magnification lenses, camera and BeamGage must be purchased separately.

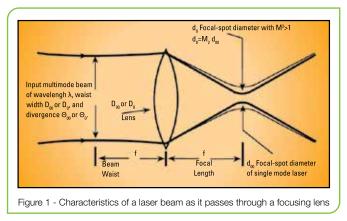
The near field of the test beam or sample is imaged with the microscope objective lens and relayed to the camera. The bracket mounting fixture holds both the lens and camera, which itself can be mounting on a positioner or optical rail. This complete system provides everything necessary to perform near-field measurements right out of the box.

Ordering Information

Item	Description						P/N
C-NFP Assy	Includes base plate for mounting camera and Microscope Objective, ATP-K variable attenuator, 50mm C-Mount and an 8mm and 5mm spacer						SP90291
Item	Description	Power	Effective Focal Length (mm)	Field of View (mm)	Working Distance (mm)	NA	P/N
60X	60X, Microscope objective	60X	3.21	0.30	0.15	0.85	SP90292
40X	40X, Microscope objective	40X	4.35	0.45	0.60	0.65	SP90293
20X	20X, Microscope objective	20X	8.33	0.90	3.75	0.40	SP90294
10x	10X, Microscope objective	10X	17.02	1.80	4.40	0.25	SP90295

3.7 What is M²?

 M^2 or Beam Propagation Ratio, is a value that indicates how close a laser is to being a single mode TEM_{00} beam, which in turn determines how small a beam waist can be focused. For the perfect Gaussian TEM_{00} condition the M^2 equals 1.

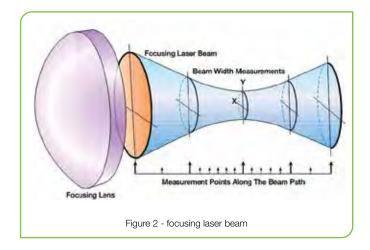

For a laser beam propagating through space, the equation for the divergence $\theta_{_{0}}$ of an unfocused beam is given by:

$$\theta_0 = M^2 4 \lambda / \pi D_0$$
 (D₀ is the waist diameter of the laser beam)

For a pure Gaussian $\text{TEM}_{_{00}}$ beam M² equals 1, and thus has no impact on the calculation. The calculation of the minimal beam spot after the lens is then:

$$d_0 = 4\lambda/\pi\theta$$
 (θ is the beam divergence after the lens)

Again with M^2 equal to 1, the focused spot is diffraction limited. For real beams, M^2 will be greater than 1, and thus the minimum beam waist will be larger by the M^2 factor.


How is M² measured?

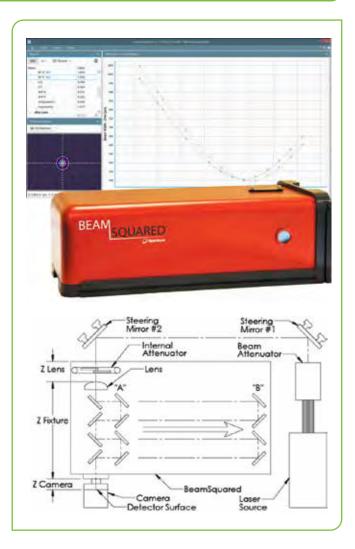
 M^2 cannot be determined from a single beam profile measurement. The ISO/DIS 11146 requires that M^2 be calculated from a series of measurements as shown in figure 1. M^2 is measured on real beams by focusing the beam with a fixed position lens of known focal length, and then measuring the characteristics of the artificially created beam waist and divergence.

To provide an accurate calculation of M², it is essential to make at least 5 measurements in the focused beam waist region, and at least 5 measurements in the far field, two Rayleigh ranges away from the waist area. The multiple measurements ensure that the minimum beam width is found. In addition, the multiple measurements enable a "curve fit" that improves the accuracy of the calculation by minimizing measurement error at any single point. An accurate calculation of M² is made by using the data from the multiple beam width measurements at known distances from a lens, coupled with the known characteristics of the focusing lens.

M² Measurement Solutions

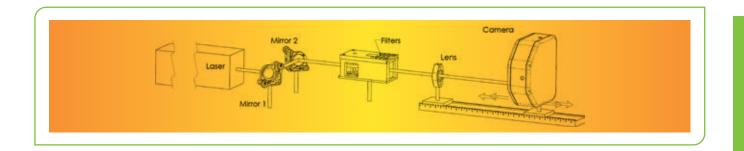
Ophir-Spiricon have a number of solutions for the measurement of M² ranging from simple manual processes to fully automated dedicated instruments, depending on the frequency of the need to measure M² of lasers and laser systems. We have a system that will meet most needs, whether for research and development of new laser systems, manufacturing quality assurance, or maintenance and service of existing systems.

3.7.1 Camera Based Beam Near-Field Propagation Analyzer: M²


3.7.1.1 BeamSquared®

- ISO compliant
- Automatically measure your beam quality in under 1 minutes
- Tune your laser for best operation
- Specifically developed for continuous usage
- Unequaled accuracy using patented Ultracal[™] Calibration
- Long optical train & automatic attenuation adjustment
- Flexible mounting configurations, install horizontal or vertically
- Pulsed and CW for most beam diameters and powers
- Compact and portable
- Detectors from 266nm to 10.6µm

The BeamSquared[®] system is a compact and fully automated tool for measuring the propagation characteristics of CW and pulsed laser systems from the UV to NIR to Telecom wavelengths. Users can also measure wavelengths above 1.8 microns, including CO₂ and terahertz in manual mode (a bench set-up; without the automated optical train) with a Pyrocam[™] IV or IIIHR. Our longer optical train and patented Ultracal[™] Calibration makes BeamSquared the most accurate product on the market and is ISO 11146 compliant. Its operational robustness and reliability ensures continuous use applications in industry, science, research and development.


Automatic M² - at Production Speeds

The BeamSquared optical train uses a fixed position lens with movable mirrors and camera. The mirrors that direct the focused beam into the camera are moved to precise locations, translating the beam through the near field, the waist, and the far field regions. All these measurements and translations, as well as incremental beam attenuation, are automatically controlled by the BeamSquared software. Design improvements in the BeamSquared system have decreased the measurement reporting time by 2-3 times, making it possible to report M² in under a minute.

Manual M²

Manual mode is available for wavelengths greater than NIR, particularly Terahertz and above, and for beams that are too large or too small for the BeamSquared optical system. Users are required to provide a manual translation/attenuation apparatus.

_	
Features	
Measurements	
	M2x, M2y, Kx, Ky, BPPx, BPPy
	Width at waist Wx, Wy
	Divergence angle Qx, Qy
	Waist location Zx, Zy
	Rayleigh X, Y
	Astigmatism
	Asymmetry ratio
	Statistical results are available on all measurements
upports both automated and mar	
lew Hardware	
iew naiuwale	Camera Options include: SP920, Xeva, Pyrocam™ III HR or IV
	RF Lens Reader
	Lens must be present for operation
	Lens configuration data stored with lens (Focal length, calibration wavelength, material, etc.)
	Shutter only open when in live mode
	Table and attenuator calibration at startup (homing before each run)
Supports hardware Trigger	
aster run times than M2-200s	
lew Interface	
	Selectable theme colors
	Splash screen with progress bar
D display	
Daispiay	Selectable Color Palette
	Manual Cursor when not running (Cursor at centroid otherwise)
Paulatia Diaglau	
Caustic Display	
	Selecting individual frames
	Auto Aperture
	Exclude points from run
Run Info Display	
	Displays Caution Notice when beams are non-conforming: (too dark, too bright, misaligned, too large or too small)
	Option to ignore misaligned beams
ditable Settings (Wavelength, Las	er to box distance, Laser to lens and focal length in manual mode)
Calculations	
	Frame Results (Total, Min, Peak, % in Aperture, Avg Pwr Density, Beam Width, Centroid, Peak, Cross Sectional Area)
	Laser Results (Waist Width, Divergence, Waist Location Rayleigh Length, M2, K, BPP, Astigmatism, Asymmetry)
	After Lens Results (Waist Width, Divergence, Waist Location Rayleigh Length, Astigmatism, Asymmetry)
	Effective Focal Length of lens
	Fitted/Measured Divergence
	Supported Beam Width calculations
	• D4 Sigma
	Knife Edge 10/90 and Programmable
	EPSA - Encircled Power Smallest Aperture (power in a bucket)
Iultiple Runs	
	Result statistics
	Progress Indicator
ingle Page Report	· · · · · · · · · · · · · · · · · · ·
	Setup information
	Results
	Statistics
	Caustic chart
_ogging/Export data	
	.CVS File

Ophir[®]

Accuracy by Design

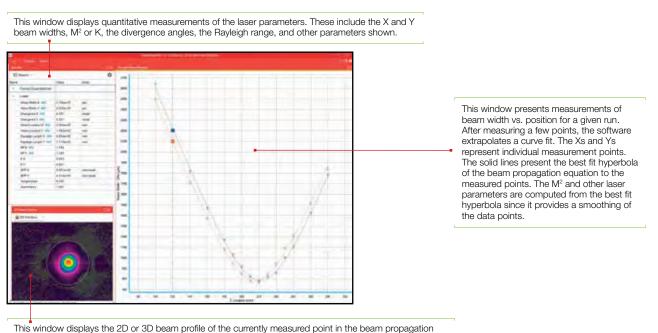
Spiricon products are known for accuracy. Using our patented Ultracal calibration method, auto aperturing to exclude noise beyond the wings of the laser beam, and long optical path, assures the user of the most accurate measurements in the industry.

Designed by Our Customers

Guided by customer input from our widely deployed previous generation M2-200s system, Spiricon redesigned the BeamSquared[®] to meet the challenging demands of the laser industry. The new BeamSquared system has significantly higher durability and operational robustness for continuous use in a three shifts a day, seven days a week environment. The rigid baseplate and internal optics greatly simplifies and reduces the time for initial set-up and alignment. The lens configuration data is now stored using an RF ID chip embedded in the lens holder which is uploaded automatically by the BeamSquared system when the lens cartridge is inserted in the system, eliminating the need for our customers to keep track of configuration file. Both novice and seasoned users will appreciate these new features along with the time-tested excellence that Spiricon has provided over the years.

Measurements

BeamSquared measures propagation characteristics in both the X and Y axes and displays the following parameters:

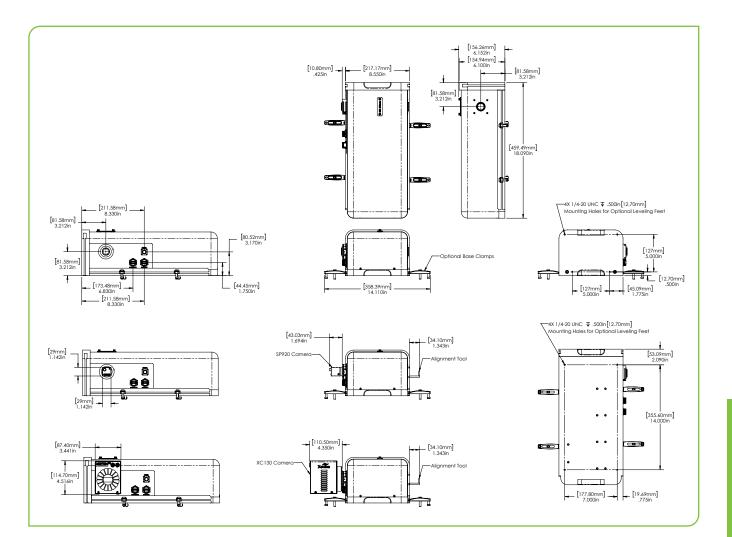

- Waist diameters
- Full angle Divergences
- Waist locations
- Rayleigh lengths
- M² or K and BPP factors
- Astigmatism
- Asymmetry

To optimize bench space, BeamSquared can be mounted either horizontally or vertically. Laser beam input port is the same dimension with either mounting method, X = Y, and the same as the M²-200s that it is replacing.

Main Screen Functions

Ophir[®]

This window displays the 2D or 3D beam profile of the currently measured point in the beam propagation curve. This image enables visual intuitive verification of the beam profile behavior through focus. After each run the user can click any individual measured point and observe the beam profile. Outlying or anomalous points can be automatically or manually excluded from the curve fit calculations for more accurate results.


Specifications

De euro Dur filler er				
Beam Profiling				
Camera model	SP920	XC130	BeamSquared® software, software	Pyrocam [™] IIIHR or Pyrocam [™] IV
Sensor type	Silicon CCD	InGaAs CCD	license, and optical train,	Software only, camera and optical
Wavelengths	266 – 1100nm	900 – 1700nm ⁽¹⁾	no camera included	train not included.
Active area	7.1mm x 5.3mm	9.6mm x 7.6mm		See individual camera data sheets
Elements	1624 x 1224	320 x 256		
Effective pixel	4.4µm x 4.4µm	30µm x 30µm		
Dynamic range	60dB	68dB		
Frame rate	15 fps	100 fps		
	USB 2.0 and 3.0	100 lps		
Interface		and Devide interfects with the state of		
Accuracy	±5% typical, ±10% waist location a			
Measurement cycle time	<1 minute typical, depending on se		de	
Camera attachment	Standard C-mount, 90° camera or	axis rotation		
Translation system	Step-motor driven ball screw			
Translation stage resolution	0.05mm			
Standard optics				
Lenses included (2)	266-440nm UV 500mm FL	1000-1700nm Extended NIR	266-440nm UV 500mm FL	N/A
	430-700nm VIS 500mm FL	400mm FL	430-700nm VIS 500mm FL	
	430-700nm VIS 400mm FL	650-1000nm NIR 400 FL	430-700nm VIS 400mm FL	
	650-1000nm NIR 400mm FL		650-1000nm NIR 400mm FL	
	1000-1700nm Extended NIR		1000-1700nm Extended NIR	
	400mm FL		400mm FL	
Optional lenses (3) (4)	266-440nm UV 750mm FL	650-1000nm NIR 750mm FL	266-440nm UV 750mm FL	N/A
*Not part of the standard BSQ kit	266-440nm UV 1000mm FL	1000-1550nm Extended NIR	266-440nm UV 1000mm FL	
	430-700nm VIS 750mm FL	750mm FL	430-700nm VIS 750mm FL	
	430-700nm VIS 1000mm FL		430-700nm VIS 1000mm FL	
	650-1000nm NIR 750mm FL		650-1000nm NIR 750mm FL	
	1000-1550nm Extended NIR		1000-1550nm Extended NIR	
	750mm FL		750mm FL	
Attenuation range				
	Nominally from ND 1.0 to ND 4.8.	Actual values varv with wavelength	h.	N/A
Damage limits (5)				
	0.15 mW/cm ² CW mode 1.0 µJ/cm ² pulse mode Both of the above for an M ² =1 @	100 mW/cm ²	Depends on type of the camera	See camera data sheets
	1064nm			
Optical limits				
Wavelengths (6)	266 - 1100nm	900 - 1700nm	Depends on type of the camera	1.06 - 3000µm
Beam size	BeamSquared Auto Mode 1mm -			Pyrocam IIIHR 0.8mm – 10mm ma
Doarn oizo	Varies with wavelength, waist size,			Pyrocam IV 0.8mm – 20mm max
				Depends on customer mechanics
				and lens
Minimum beam width	44µm	300µm	N/A	800µm
Software	44µ11	500µm	N/A	000µ11
	Fast scap method (1 minute) for a	tomatic (ISO) and manual M2 ma	aguramant	
BeamSquared Software	Fast scan method (1 minute) for au	itomatic (ISO) and manual M2 me	asurement	
General	000.01.050.0			N1/A
Storage temperature	-30° C to 65° C			N/A
Storage humidity	95% maximum (non-condensing)			N/A
Operating temperature	10° C to 40° C			N/A
Operating humidity	95% maximum (non-condensing)			N/A
Power requirements (7)				
Input voltage	90 – 264 V AC			N/A
AC Line current	1.6 A			N/A
Line frequency	47Hz to 63Hz			N/A
Weight	26 lbs. w/o camera			N/A
Dimensions	217.2mm X 459.5mm X 156.3mm			N/A
Compliance	CE, UKCA, China RoHS			
Ordering information		(0)		
Part Number	SP90502	SP90444 ⁽⁸⁾	SP90445	SP90410
Notes:	(3)For selection of optimal BeamSquared le	wavelength regions, spot sizes and diverg ns, use Beam Profiler Finder.	t may impact beam measurement ences, Additional lenses must be ordered separ up to 20 meters, for longer Rayleigh lengths, ple	
	(5) CCD cameras can be damaged by pow While it may be that the laser input power	er in excess of 0.15 mW/cm ² or energy in er or energy measures well below this dam ety. CCD cameras can be costly to repair or inded to use the UV reflective ND2 filter P/	excess of 1 µJ/cm ² . BeamSquared employs a for nage threshold, it can easily exceed these levels or replace. N SP90568	ocusina optic.

Accessories Ordering Information

Item	Description	P/N
BSQ-SP920-A	An SP920 camera licensed for BeamSquared®. Sold as an accessory for those also purchasing a BSQ-XC130	SP90521
BSQ-Lens Kit 266-1550	Lens kit that includes 5 BeamSquared lenses: 500mm UV, 500mm VIS, 400mm VIS, 400mm NIR, 400mm XNIR	SP90449
BSQ-Lens Kit 650-1700	Lens kit that includes 2 BeamSquared lenses: 400mm NIR, and 400mm XNIR.	SP90450
BSQ-Lens UV 500mm	Single BeamSquared lens, 500mm focal length, A/R coated for 266-440nm	SP90451
BSQ-Lens VIS 500mm	Single BeamSquared lens, 500mm focal length, A/R coated for 430-700nm	SP90452
BSQ-Lens VIS 400mm	Single BeamSquared lens, 400mm focal length, A/R coated for 430-700nm	SP90453
BSQ-Lens NIR 400mm	Single BeamSquared lens, 400mm focal length, A/R coated for 650-1000nm	SP90454
BSQ-Lens XNIR 400mm	Single BeamSquared lens, 400mm focal length, A/R coated for 1000-1550nm	SP90455
BSQ-Lens XNIR 600mm	Single BeamSquared lens, 600mm focal length, A/R coated for 1000-1550nm	SP90485
BSQ-Lens UV 750mm	Single BeamSquared lens, 750mm focal length, A/R coated for 266-440nm	SP90554
BSQ-Lens VIS 750mm	Single BeamSquared lens, 750mm focal length, A/R coated for 430-700nm	SP90555
BSQ-Lens NIR 750mm	Single BeamSquared lens, 750mm focal length, A/R coated for 650-1000nm	SP90556
BSQ-Lens XNIR 750mm	Single BeamSquared lens, 750mm focal length, A/R coated for 1000-1550nm	SP90557
BSQ-Lens UV 1000mm	Single BeamSquared lens, 1000mm focal length, A/R coated for 266-440nm	SP90558
BSQ-Lens VIS 1000mm	Single BeamSquared lens, 1000mm focal length, A/R coated for 430-700nm	SP90559
BSQ SP300 to SP920 upgrade	Camera upgrade	SP90511
BGS license for BSQ-SP920	Includes BeamGage Standard software license in addition to BeamSquared software license	SP90214
BGP license for BSQ-SP920	Includes BeamGage Professional software license in addition to BeamSquared software license	SP90244
BGP license for BSQ-XC130	Includes BeamGage Professional software license in addition to BeamSquared software license	SP90508
BSQ-XC130-KEY	Includes BeamSquard software license for XC-130 camera	SP90503
BSQ - UV Reflective Filter	BeamSquared reflective ND2 filter, UV Grade Fused Silica, Inconel coating for 245-440nm	SP90568

3.8 BeamWatch[®] Family

The BeamWatch family of products is the first to make use of Rayleigh scattering measurement to perform non-contact measurement of high power lasers.

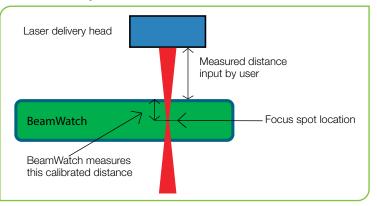
3.8.1 Introduction To Rayleigh Scattering Measurement Technology

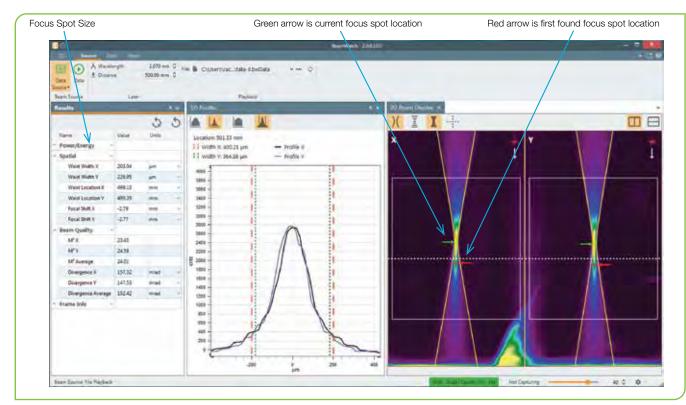
Disruptive Technology

BeamWatch is the first device to measure a laser without coming in contact with its beam which allows it to be the first laser quality measurement product in history to have no upper limit on the lasers which it can measure. BeamWatch provides high-power industrial laser users with data never before seen such as the dynamic measurement of focus shift caused by thermal effects on the laser system. BeamWatch also provides the industrial laser user with measurement of other key laser operating parameters in real-time.

The system measures the signal generated from Rayleigh scattering around the laser's beam waist, where the power density is the highest. Rayleigh scattering is a physical property of light caused by light scattering off of air molecules. Unlike traditional beam measurement systems, the beam passes directly through BeamWatch and is not disrupted, mechanically or optically. In addition, BeamWatch has no moving parts so there is no need for cooling of any components. Specialized system software dynamically measures the signal multiple times per second, allowing the laser user to key in on critical operational laser attributes, such as beam waist size and position with respect to the material being processed.

BeamWatch User Interface


The user has access to those tools needed for start-up and advanced beam diagnostics.


Focus Spot Size (Waist Width)

BeamWatch images the full beam caustic measuring the waist at its smallest point, many times per second.

Focus Spot Location

Now you can precisely know the dynamic behavior of focal spot shift throughout the laser duty cycle. By inputting the known distance from the laser delivery head to a precise datum on BeamWatch the focal spot distance is constantly measured and tracked with millisecond updates.

Assured Process Consistency

Measure as often as needed to assure repeatable and consistent process uniformity. Mount BeamWatch into the process or manually insert BeamWatch and make periodic measurements.

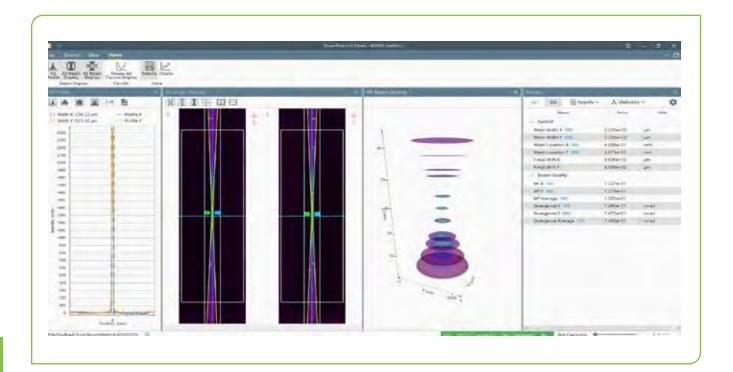
You can also automatically compare to initial process validation measurements and utilize automated pass/fail.

Automation Interface

BeamWatch includes the tools to support Automation Clients written in Visual Basic for Applications (VBA), C++ CLI, or any .Net compliant environment, such as Microsoft Excel or National Instruments' LabVIEW.

Software Features

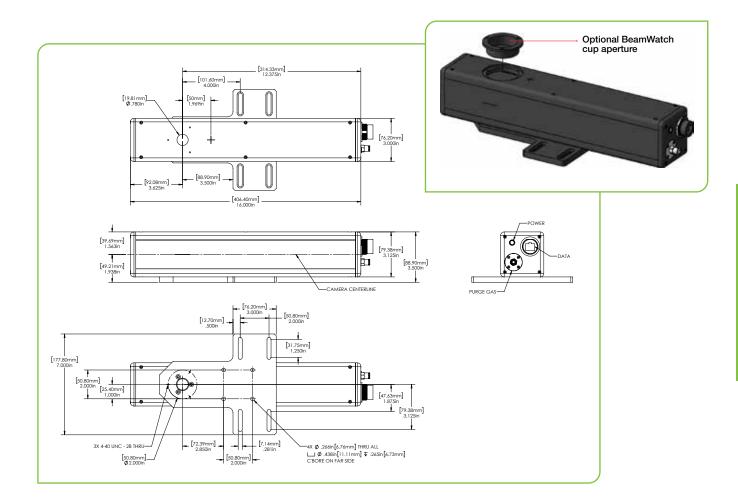
Features	Dual Axis
Results - Power/Energy	Relative Power (Absolute Power when configured with Juno and an Ophir Power Meter)
Results - Spatial	Waist Width X & Y
	Waist Location X & Y
	Focal Shift X & Y
	Centroid X & Y
	Width at Cursor X & Y
	Ellipticity at Cursor
	Rayleigh Length X & Y
	Waist to Cursor X & Y
Results - Beam Quality	M ² X & Y
	M ² Average
	K X & Y
	K Average BPP X & Y
	BPP X & Y BPP Average
	Dir Average Divergence X & Y
	Divergence Average
Results	All results can be shown/hidden.
Frame Info	Frame ID
	Timestamp
1D Profile	Logarithmic or Linear
	Control to enable/disable the beam width markers
	Profiles are drawn at the cursor location. Cursor is controlled in the 2D display
	Display shows current cursor location and width at cursor results
	The X and Y profiles are overlapped in a single display
2D Beam Display	Overlays that can be enabled/disabled
	Fitted caustic and drawn beam area
	Raw data points
	Beam Image
	Alignment Crosshair – Marks the center of the display for each axis
	Beam can be displayed vertically or horizontally on the screen
	Labels indicate X and Y axis and the direction of beam propagation
	Cursor can be moved to any point along the beam
	Focal point indicators – one shows current waist position, another shows first found waist position
Statistics	Mean, Std Dev, Max, Min, and Sample Size
System Requirements	PC computer running Windows 7 (64) and Windows 10 Laptop or Desktop:
	GHz Pentium style processor, dual core recommended
	Minimum 2GB ŔAM
	Accelerated Graphics Processor
	Hard drive space suitable to hold the amount of video data you expect to store (50-100 GB recommended)



3.8.2 BeamWatch[®] Non-contact, Focus Spot Size and Position Monitor for high power YAG, Diode and Fiber lasers

- Instantly measure focus spot size
- Dynamically measure focal plane location during start-up
- From 400W and up no upper limit (So far we have measured up to 100kW)
- Non-contact, laser beam is completely pass-through
- Automation Control Interface for System Integration
- GigE camera interface for local network installation
- Patented

BeamWatch utilizes disruptive technology to measure laser beam characteristics of very high power lasers. By not intercepting the beam and yet providing instantaneous measurements, you can now monitor the beam at frequent intervals without having to shut down the process or remove tooling and fixtures to get access. In addition, you can now measure focal spot location at several times per second and know if there is any focal spot shift during those critical start-up moments.


Specifications

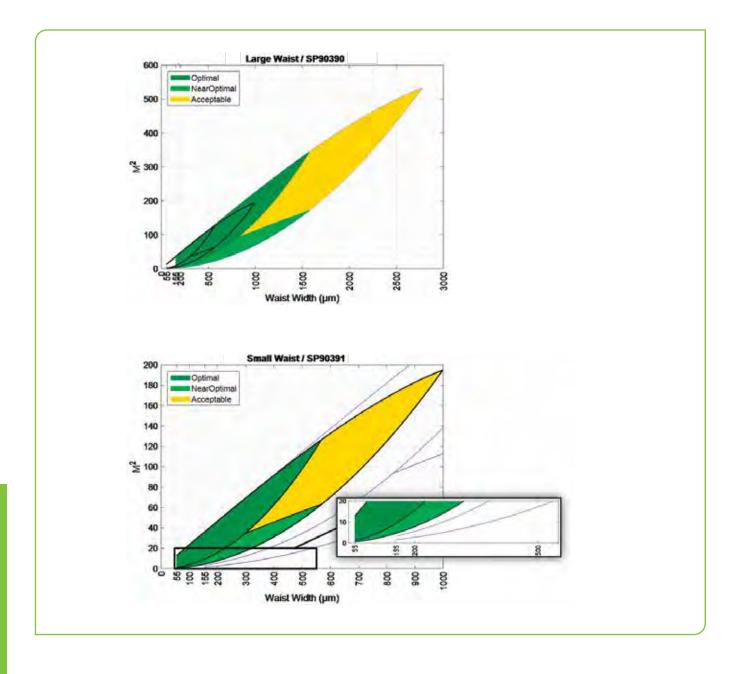
Model	BW-NIR-2-155	BW-NIR-2-55
Beam Profiling		
Wavelengths	980-1080nm	980-1080nm
Minimum power density	2 Megawatts/cm ²	2 Megawatts/cm ²
Minimum spot size	155 microns	55 microns
Depth of filed (DOF)	25.74mm	9.01mm
DOF resolution	16.5µm	5.5µm
Maximum beam diameter at entrance/exit	12.5mm	12.5mm
Accuracy		
Waist width (Spot size)	±5%	±5%
Waist location	±125 micrometers within the BeamWatch window	±125 micrometers within the BeamWatch window
Focal shift	±50 microns	±50 microns
Beam parameter product	±3.5% RMS	±3.5% RMS
Divergence	±3.5% RMS	±3.5% RMS
M2	±3.5% RMS	±3.5% RMS
General		
Communication to PC	GigE	GigE
Power supply	12 Volts DC, 1.67 Amps max, 100-240V AC	12 Volts DC, 1.67 Amps max, 100-240V AC
Particulate purge	Clean Dry Gas, approximately 10 LPM	Clean Dry Gas, approximately 10 LPM
Weight	3.9 Kg	3.9 Kg
Dimensions	16in x 7in x 35in	16in x 7in x 35in
	406.4mm x 177.8mm x 88.9mm	406.4mm x 177.8mm x 88.9mm
Compliance	CE, UKCA, China RoHS	CE, UKCA, China RoHS
Ordering information		
Part Number	SP90390	SP90391

Suggested Add-Ons

Ophir[®]

Item	Description	P/N
Cup aperture	For those applications where the standard flat aperture does not position the delivery head close enough to the measurement centerline. Includes alignment tool SP90475	SP90476
Rotation Mount	Add-on 180° manual rotation mount to bottom of BeamWatch	SP90346
_ocking Ethernet Cable	Replace standard Ethernet cable with one that locks into place, IP67 rated	SP90394
5000W-BB-50	5kW water cooled power sensor	7Z02754
10K-W-BB-45-V4	10kW water cooled power sensor	7Z07102
30K-W-BB-74	30kW water cooled power sensor	7Z02757
120K-W	100kW water circulated power sensor for laser with an approximately Gaussian beam and fiber output	7Z02691
Juno	Compact module to operate one Ophir sensor from your PC USB port	7Z01250
Vega	Hand held color universal power meter	7Z01560

3.8.2

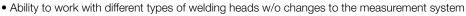

Operating Space Charts

The plots are intended to give a visual indication of the recommended operating space for BeamWatch. If BeamWatch is operated outside of this space, it may be more difficult to see the curvature of the caustic or the beam may be large enough at the edges of the image that it is out of focus.

The maximum waist is dependent on the power density and M^2 of the beam. Specified is a minimum power density of 2 megawatts/cm² and the M^2 vs waist width is shown in the corn-looking graphs. Following these charts also covers the 12.5mm max beam size as it enters and exits the unit.

The 12.5mm maximum beam size at entrance and exit is the physical clear aperture of unit, and is the same for all models.

- Optimal has at least 3 Rayleigh lengths on both sides of the waist, with the waist at the center of the image
- Near Optimal has at least 3 Rayleigh lengths on 1 side of the waist, with the waist at the end of the image
- Acceptable has at least 1.5 Rayleigh lengths on both sides of the waist, with the waist at the center of the image



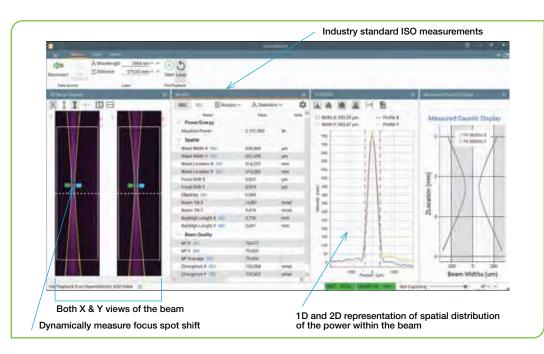
Ophir[®]

3.8.3 BeamWatch[®] Integrated - Beam Characterization System for Automated Manufacturing

BeamWatch Integrated is a fully automated laser measurement system designed to measure critical laser beam parameters on industrial production lines.

- Measures all the critical laser beam parameters of the focused beam up to 9999 W power (up to 30 kW on request)
- Measured laser parameters include:
- Waist (focus spot) width and location
- Focal shift
- Centroid
- M2 or K
- Divergence
- Beam parameter product
- Rayleigh length
- Beam tilt angle
- Absolute power
- Fully automated operation
- Trend analysis with good/bad signal
- Detailed report with time stamp

- Industrial interface of choice in addition to GigE: PROFINET, EtherNet/IP and CC-Link
- Rugged for industrial production environment
- Short measurement time for frequent measurements during shift operation
- Two options for single-mode or multi-mode lasers available


Although ever more powerful cutting and welding laser equipment is being used on modern production lines, all too frequently – due either to lack of time or to the complexity – the quality of the laser beam goes unchecked during the production process. Because laser process quality is directly linked to laser quality, this can lead to large batches of defective parts in high-throughput production lines, e.g. in the automotive industry. In addition to the significantly higher risk of loss or safety issues, neglecting to monitor the quality of the laser beam consistently makes it almost impossible to detect the root cause of problems, when they occur.

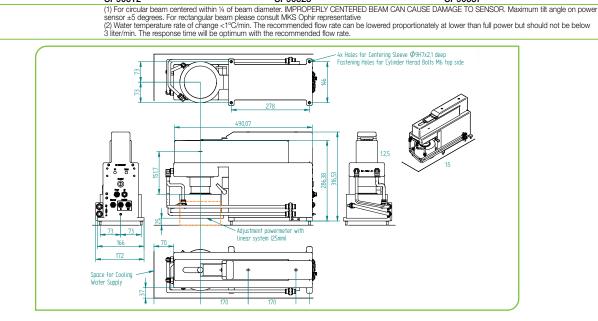
To address this issue, BeamWatch Integrated was developed. Based on the patented non-contact BeamWatch measurement principle (using Rayleigh scattering), this technology provides for the simultaneous measurements of multiple profiles along the beam caustic at video rates, delivering – in mere fractions of a second – all the beam key parameters according to ISO 13694 and ISO 11146 standards. Real-time performance also allows for detection of dynamic focal shift, while a NIST-traceable power sensor assures absolute power readings.

With its shutter and rugged design, BeamWatch Integrated is a compact and self-contained system that can accommodate different types of welding heads. A variety of interfaces makes it possible to integrate the system into production networks and automated manufacturing lines to facilitate direct transfer of measurement data.

The short measurement times allow the laser beam to be checked automatically during the loading / unloading phase, as frequently as once every produced unit. Additionally, all parameters can be read out using standard interfaces and – as part of the process monitoring – consistently documented for each individual component, as desired. Since they are based on a large amount of measurement data, trend diagrams are highly accurate and can therefore deliver useful insights for predictive maintenance.

Tolerances and limit values can be set up for measured parameters to trigger corrective actions as needed. BeamWatch Integrated operates virtually without maintenance, because contactless measurement exerts no wear on the instrument.

3.8.3.1 Beamwatch Integrated 150


- Automatically measure laser power, caustic and focus shift in real time
- Support multi-mode lasers
- Fully automated operation
- Trend analysis with good/bad signal
- Detailed report with time stamp
- Ability to work with different types of welding heads w/o changes to the measurement system
- Rugged for industrial production environment
- Short measurement time for frequent measurements during shift operation

Specifications

Model	BW-Integrated-150-	NIR-155-Profinet	BW-Integrated-150-NIR-155-Ethernet/IP	BW-Integrated-150-NIR-155-CC-Link
Beam Profiling				
Wavelength	980 - 1080 nm			
Waist width accuracy	±5 %			
Waist location accuracy	±125 µm within the E	BeamWatch window		
Camera field of view inside the unit	32.17 mm x 8.55 mr			
Maximum entrance/exit beam diameter	12.5 mm			
Focal shift accuracy	±50 μm			
BPP accuracy	±3.5 % RMS			
Divergence accuracy	±3.5 % RMS			
M ² accuracy	±3.5 % RMS			
Particulate purge	Clean dry gas (Air, Ni	trogen, Argon), ~5-10) L/min. 6 bar	
Power Meter				
Power range	gu) W 9999 W (up	to 30 kW on request)		
Maximum power density at power meter (1)		Max power density		
	< 15 mm	10 kW/cm ²		
	15 - 20 mm	7 kW/cm ²		
	20 - 40 mm	5 kW/cm ²		
	40 - 45 mm	4 kW/cm ²		
Power sensor response time		V (quicker for less pov	ver)	
Backscattered power	< 1 %			
Power noise level	25 W			
Linearity with power	±2 %			
Power accuracy	±5 %			
Software				
BeamWatch Integrated software	PROFINET		EtherNet/IP	CC-Link
Ŭ	Webinterface or Bea	mWatch Software		
Output	OK/Warning/NOK va	lues, CSV, PDF and E	BeamWatch files	
Calibration Certificates	, i i j	,		
Power Sensor	NIST traceable			
Camera	Certification			
General				
Communication	PROFINET & GigE		EtherNet/IP & GigE	CC-Link & GigE
Distance between focus and power meter	150-175 mm		<u>_</u>	<u> </u>
Power supply	24 Volts DC, 5 Amps	max		
Water cooling (2)			°C, 6 bar, ~2 bar pressure drop	
Weight	~20 kg		· · ·	
Dimensions	21.78 in x 12.48 in x	6.78 in		
	553 mm x 317 mm x	(172 mm		
Compliance	CE, UKCA, China Ro	HS		
Ordering information				
Part Number	SP90512		SP90528	SP90537
Netee	(1) For size der boom cont	avad within 1/ of baans diam		ANALOF TO OFNICOD Maximum tilt angle on norman

3.8.3.1

Notes

BeamWatch Integrated with 150-175mm distance

between focus position and power meter

150-175mm

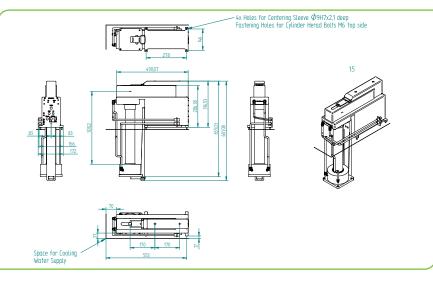
FOR LATEST UPDATES, PLEASE VISIT WWW.OPHIROPT.COM/PHOTONICS

FOR LATEST LIPDATES

254 JULY 1, 2022

3.8.3.2 Beamwatch Integrated 500

- Automatically measure laser power, caustic and focus shift in real time
- Support single-mode lasers
- Fully automated operation
- Trend analysis with good/bad signal
- Detailed report with time stamp
- Ability to work with different types of welding heads w/o changes to the measurement system
- Rugged for industrial production environment
- Short measurement time for frequent measurements during shift operation


Specifications

BeamWatch Integrated with 500mm distance between focus position and power meter

Model	BW-Integrated-500-NIR-155-Profinet	BW-Integrated-500-NIR-155-Ethernet/IP	BW-Integrated-500-NIR-155-CC-Link
Beam Profiling			
Wavelength	980 - 1080 nm		
Waist width accuracy	±5 %		
Waist location accuracy	±125 µm within the BeamWatch window		
Camera field of view inside the unit	32.17 mm x 8.55 mm		
Maximum entrance/exit beam diameter	12.5 mm		
Focal shift accuracy	±50 μm		
BPP accuracy	±3.5 % RMS		
Divergence accuracy	±3.5 % RMS		
M ² accuracy	±3.5 % RMS		
Particulate purge	Clean dry gas (Air, Nitrogen, Argon), ~5-10) L/min. 6 bar	
Power Meter		,	
Power range	500 W - 9999 W (up to 30 kW on request)		
Maximum power density at power meter (1)			
the state of the states.	< 15 mm 10 kW/cm ²		
	15 - 20 mm 7 kW/cm ²		
	20 - 40 mm 5 kW/cm ²		
	40 - 45 mm 4 kW/cm ²		
Power sensor response time	2.7 s max for 9999 W (quicker for less pov	ver)	
Backscattered power	< 1 %		
Power noise level	25 W		
Linearity with power	±2 %		
Power accuracy	±5 %		
Software	20 /0		
BeamWatch Integrated software	PROFINET	EtherNet/IP	CC-Link
	Webinterface or BeamWatch Software	24101110211	
Output	OK/Warning/NOK values, CSV, PDF and E	BeamWatch files	
Calibration Certificates			
Power Sensor	NIST traceable		
Camera	Certification		
General			
Communication	PROFINET & GigE	EtherNet/IP & GigE	CC-Link & GigE
Distance between focus and power meter			
Power supply	24 Volts DC, 5 Amps max		
Water cooling ⁽²⁾	Clean non-corrosive water, 8 L/min, 18-30	°C 6 bar ~2 bar pressure drop	
Weight	~20 kg		
Dimensions	21.78 in x 26.87 in x 6.78 in		
	553 mm x 682 mm x 172 mm		
Compliance	CE, UKCA, China RoHS		
Ordering information			
Part Number	SP90527	SP90529	SP90538
Notes:		neter. IMPROPERLY CENTERED BEAM CAN CAUSE D	

sensor ±5 degrees. For rectangular beam please consult MKS Ophir representative (2) Water temperature rate of change <1°C/min. The recommended flow rate can be lowered proportionately at lower than full power but should not be below 3 liter/min. The response time will be optimum with the recommended flow rate.

3.9 Additive Manufacturing Systems

Additive manufacturing (AM) has restructured how prototype, developmental and advanced design mechanical components are made. Direct Laser Melting, Selective Laser Sintering or 3D Metal Printing is quickly becoming the standard for designs that could not be fabricated with traditional metal removing techniques. To create consistent, strong structures using laser-based additive manufacturing processes that meet aviation DOD standards or medical device FDA requirements, the metallurgy must be consistent, and a laser beam of known dimension, power density and focal spot location is required. Quality 3D laser printed processes require a laser delivering the correct amount of power, distributed correctly and focused at the correct location. To insure consistent and structurally sound parts these parameters should be directly measured before and after any critical part is made.

As AM systems have gained in popularity for the mass production of metallic parts, the components produced are becoming larger in size while having finer details.

This requires increasing AM chambers, having larger powder platforms and longer laser focal lengths. Simultaneously, they are equipped with more powerful lasers having smaller focal spots.

Ophir instruments designated for AM systems meet the accuracy requirements of modern AM chambers and lasers, allowing accurate measurement of focal spot size and position, laser profile, and power distribution. They measure how those parameters change with time as well, to assist maintenance of quality and repeatability of the manufactured parts.

Model	BeamPeek™	BeamWatch® AM	BeamCheck™
Wavelengths (nm)	532, 1030-1080	1060-1080	1060-1080
Maximum power (Watt)	1000	1000	600
Minimum Focal Spot (µm)	34.5	50	37
Cooling	Passive	Fan	Fan
		Analysis	
M ² (Caustic)	-	V	
Rayleigh length	-	V	-
Focal Spot location		V	
Beam Profile	V	V	
Power	V	ý	ý.
Software	BeamGage Pro	BeamWatch	BeamGage Pro
Part Number	SP90609	SP90470	SP90411

თ. თ

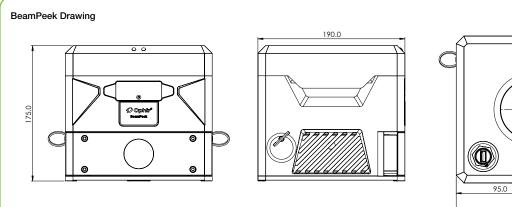
3.9.1 BeamPeek[™]

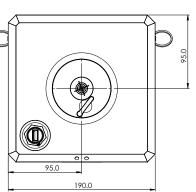
Beam Profiling and Power Meter for AM Industry

The BeamPeek laser beam profiler and power meter allows simultaneous beam profiling, focal spot analysis, and power measurement of additive manufacturing (AM) lasers.

It integrates both beam profiler, power meter, optical beam sampling system and beam dump. The electronics, beam splitters, and optics, as well as the SP932U CMOS camera and power meter are safely confined in separate chamber.

The beam dump is integrated into an easily replaceable tray without the need for active cooling using air or water.


- Focal spot size and position, Laser Beam Profile, and Power
- Multimode and single mode lasers
- Rugged for industrial production environment and metallic powder
- Doesn't require water or air cooling
- Fits AM chambers with 150-800mm focal lengths



BeamPeek

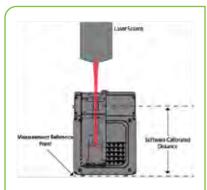
Specifications

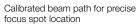
Model	BeamPeek
Beam Profiling, Power Meter and Beam	n Dump
Wavelengths	532nm, 1030 - 1080 nm
Spot size (min - max)	34.5µm - 2mm
Maximum power	
· · · · · · · · · · · · · · · · · · ·	Multimode: 1000W
	Single mode: 1000W at 1064nm
	700W at 532nm
Minimum power	10W
Measuring rate	24fps
Maximum spot size at entrance	10mm
Maximum incidence angle	0.5°
Operation time	2 min at 1000W
Camera position from bottom plane (1)	Nominal 76.54mm
Accuracy	±3% at 532nm & 1064nm
	±5% for 1030nm to 1080nm
Response time	<3\$
Cooling	Passive
Software	
	BeamGage Professional software
	StarLab, BeamPeek Tools
Calibration Certificates	
Power sensor	NIST traceable
JUNO USB converter	NIST traceable
Camera position from bottom plane (1)	Test Certificate ±100 µm
General	
Communication and power (2)	USB 3.0
Weight	~9.5 kg
Dimensions	190mm x 190mm x 175mm
Compliance	CE, UKCA, China RoHS
Ordering Information	
Part Number	SP90609
Notes	 Nominal value, may differ from item to item due to assembly and camera tolerances; actual value is on COC, calibration sticker, ± 100µm Comes with 2m cable, 15m active USB 3.0 cable P/N:7E11214 available on request as accessory

3.9.1

3.9.2 BeamWatch® AM

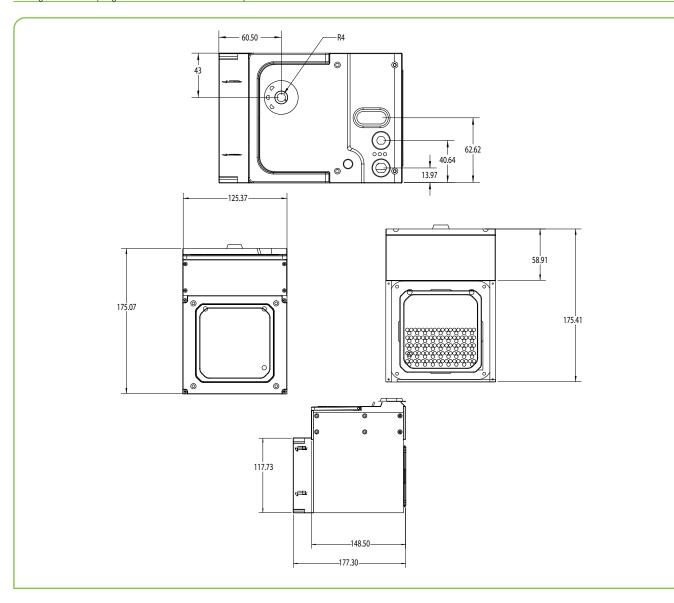
BeamWatch AM provides simultaneous measurements of multiple profiles along the beam caustic in the camera field-of-view (FOV).


Real-time measurements are performed at video rates. They include:


- Waist (focus spot) width and location
- Focal shift
- Centroid
- M² or K
- Divergence
- Beam Parameter Product
- Rayleigh length
- Absolute power
- Tilt angle

Real-time performance also allows for measurement of dynamic focal shift during laser startup. BeamWatch AM measurement technique is based on Rayleigh scattering of laser light by oxygen and nitrogen molecules in the air as the beam propagates through the medium. Measurement of this scattered light provides an equivalent slit-scan of the laser beam in the direction of the observed view. The scattered light is measured using a conventional camera and image capture systems. BeamWatch AM includes a camera for spatial measurements and a NIST-traceable power sensor that will provide a complete analysis of the laser power density profile.

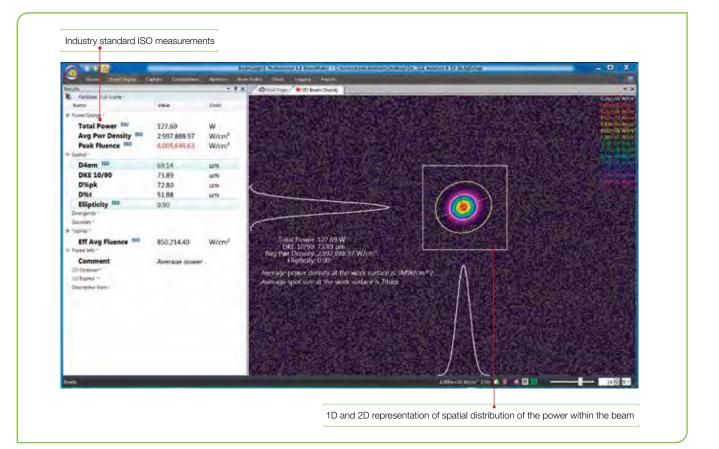
The camera is simultaneously, and real-time, viewing the beam caustic including the near/ focus/and far field of the beam. This measurement technique includes Propagation and M2 measurements adhering to the ISO 11146 standards. In addition, and because all measurements are made in real-time, any focal shift occurring during the critical start up seconds is measured and reported. BeamWatch AM has USB connectivity to Windows personal computers for data acquisition, analysis, and display.



Ophir[®]

Specifications

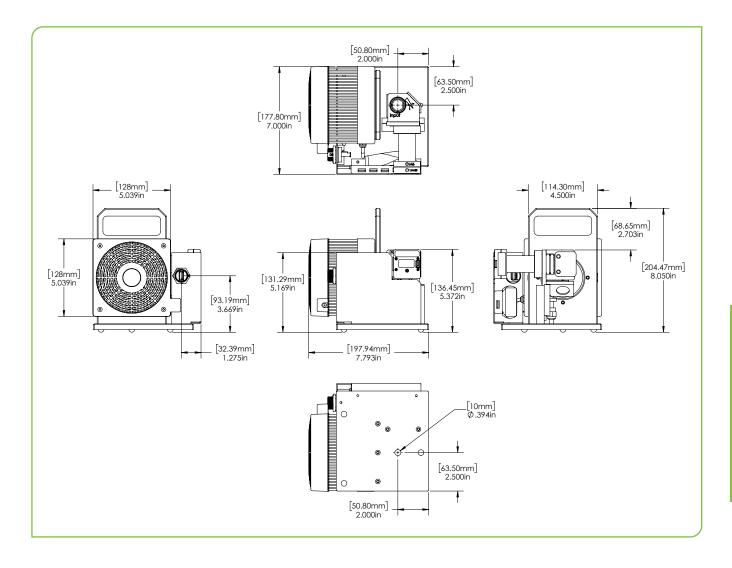
Model	BW-NIR-2-50-AM	
Beam Profiling		
Wavelengths	1060-1080 nm	
Minimum power density	1.5 Megawatts/cm ²	
Minimum focus spot	50 microns	
Maximum beam diameter at entrance/exit	6 mm (4.5 mm using the Halo Aperture)	
ISO 11146 measurements	Self monitoring, will display ISO next to the measurement	
Power Meter/Beam Dump		
Measured power	50 W to 1000 W	
Maximum power exposure	1000 W for 2 minutes	
Precision	NIST traceable calibration, ±3%	
Cool-down time	20 minutes with fan cooling if used to maximum exposure	
Software		
BeamWatch AM software	To run on user supplied PC	
	Data is saved in ASCII and HDF5 formats	
	Print-out of critical measurements and graphics	
Calibration Certificates		
Power sensor	NIST traceable	
JUNO USB converter	NIST traceable	
Camera	Certification	
Distance from bottom of unit to focus location	NIST/National Lab traceable	
General		
Communication to PC	USB 2.0 & USB 3.0	
Power	110 - 220 Volts AC 50/60Hz	
Particulate purge	Clean dry gas	
Weight	17 lbs	
Dimensions	7.03in x 4.96in x 7.16in	
	178.57mm x 126mm x 181.92mm	
Compliance	CE, UKCA, China RoHS	
Ordering Information		
Part Number	SP90470	
Accessories		
Turning Cu mirror & springs	Replacement mirror	SP90611


3.9.3 BeamCheck™

- Beam check measures:
 - Focal spot size at the build plane
 - Laser power at the build plane
 - Laser power density at the build plane
 - Changes in spot size & power density over time
- 0.1 to 600 Watt integrated power sensor
- For fiber lasers; 1060 to 1080nm Wavelength
- Power densities to >3MW/cm²
- Spot sizes 37um to 3.5mm
- Frame rate multiple frames per second
- Additive manufacturing system focal length 200mm >400mm

BeamCheck is an integrated laser measurement system designed to measure critical laser beam parameters for laser-based additive manufacturing systems BeamCheck includes a CCD camera for spatial measurements and a NIST traceable power sensor that will provide a complete analysis of the laser power density profile.

The camera is precisely located at the build plane so that an accurate power density model of the working laser beam can be made. A beam splitter directs a small percentage of the beam to the camera, while the majority of the beam is directed to the integrated power sensor. From these measurements an accurate beam spot size and power density can be derived.



3.9.3

BeamCheck Includes

Model	BeamCheck
Beam Profiling	
	SP928 high resolution CCD camera
	3.69um square pixel, USB 3.0, multiple frames per second
	CCD is positioned within +/- 50µm of the same distance as the work surface
	LBS-300-NIR laser beam splitter / attenuator
	Directs the beam to both the camera and power sensor
Power Measurement	
	FL600A-LP2-65 laser power sensor
	NIST traceable, 600 Watts, fan cooled
	JUNO Smart Sensor to USB Adapter
Software	
	BeamGage Professional Software to run on user supplied PC
	StarLab software to interface power sensor to BeamGage
Data is saved in ASCII and HDI	=5 formats
Custom print-out includes;	
	2D False Color Power Density Map
	Total Power
	NIST/National Lab Traceable certificate
	Beam Diameter (D4sigma, 90/10 Knife Edge, Power-in-a-Bucket)
	Peak Power Density
Calibration Certificates for;	
	FL600A-LP2-65 Power Sensor
	JUNO USB Converter
	SP928 CCD Camera
	Calibration of build plate distance to camera array location
Compliance	CE, UKCA, China RoHS
Ordering Information	
Part Number	SP90411

Products Index

Product	P/N	Page
1/4-20 Mount, Photodiode Trigger	SP90434	240
1" FC fiber adapter	7Z08286	39
1" SMA fiber adapter	7Z08285	39
1" to C-mount adapter	7Z08290	39
1" to C-mount port reducer 1" to SM1 adapter	7Z08288 7Z08289	39 39, 113
1 to SMT adapter 1st Wedge Beam Splitter (BB)	SPZ17015	230, 238
1st Wedge Beam Splitter (NIR)	SPZ17015 SPZ17031	230, 238
1X UV image converter	SPZ17031 SPZ17023	230 238, 239
2" LT- Mount Extension Tube	SP90575	224
2A-BB-9	7Z02767	46
2nd Wedge Beam Splitter (BB)	SPZ17026	230, 233, 239
2nd Wedge Beam Splitter (NIR)	SPZ17032	230
2nd Wedge Beam Splitter Large Aperture (BB)	SPZ17025	230
2.5" to 1" port reducer	7Z08305A	39
3" LT- Mount Extension Tube	SP90574	224
3A	7Z02621	40, 46
3A-FS	7Z02628	47
3A-IS	7Z02404	34, 40
3A-IS-IRG	7Z02403	34
3A-P	7Z02622	46
3A-PF-12	7Z02720	46
3A-P-FS-12	7Z02687	47
3A-P-QUAD	7Z07935	46, 51, 90
3A-P-THz	7Z02742	47
3A-QUAD	7Z07934	46, 51, 90
3A-UA	Consult Ophir representative	119
4mm spacer	SPG01698	235, 239
4X Beam Expander with UV Converter	SPZ17022+SPZ17019	233, 238, 239
4X reducing UV image converter	SPZ17024	238, 239
4X reimaging beam expander	SPZ17022	232, 233, 239
4X reimaging beam reducer	SPZ17017	234, 239
5mm spacer	SPG02106	235
6K-W-BB-200x200	7Z02764	71
6X expanding microscope objective	SPZ08257	232, 239
8mm spacer	SPG02067	235
10A	7Z02637	49
10A-P	7Z02649	50
10A-PPS	7Z07904	49, 51, 90
10K-W Protective Cover	1G01332	86, 94
10K-W/15K-W Scatter Shield Cover	7Z08345	86, 94
10K-W-BB-45	7Z07102	72, 251
10X, Microscope objective	SP90295	241
12A	7Z02638	48
12A-P	7Z02624	48
12X expanding microscope objective	SPZ08259	232, 239
15(50)A-PF-DIF-18	7Z02740	50
15K-W-BB-45	7Z02770	73
16K-W Protective cover	1G02813	86, 94
16K-W Scatter Shield Cover	7Z08356	86, 94
16K-W-BB-55	7Z02791	73
20C -SH	7Z02602	56, 120
20C-UAE	Consult Ophir representative	120
20C-UAS	Consult Ophir representative	120
20C-UAU	Consult Ophir representative	120
20mm diameter UV imaging plate	SPF01177	238
20X, Microscope objective	SP90294	241
22X expanding microscope objective	SPZ08260	232, 239
25mm focal length CCTV lens kit	SP90085	235
30(150)A-BB-18	7Z02699	53
30(150)A-HE-17	7Z02722	54
30(150)A-HE-DIF-17	7Z02729	54
30(150)A-LP2-18	7Z02786	53
30(150)A-SV-17	7Z02724	54
30A-BB-18	7Z02692	49
30A-N-18	7Z02695	50
30A-P-17	7Z02693	50
30K-W Protective Cover	1G02406	86, 94
30K-W Scatter Shield Cover	7Z08346	86, 94
30K-W-BB-74	7Z02757	74, 251
30mm diameter UV imaging plate	SPF01150	238
	000000	0.41
40X, Microscope objective 50(150)A-BB-26	SP90293 7Z02696	<u> 241</u> 49

Product	P/N	Page
50(150)A-BB-26-PPS	7Z07900	49, 55, 91
50(150)A-BB-26-QUAD	7Z07937	55, 91
50A-PF-DIF-18	7Z02738	50
50mm focal length CCTV lens kit	SP90038	235
50mm X 50mm UV imaging plate	SP90082	238
60X microscope objective	SP90292	241
100C-SH	7Z02680	56, 122
100C-UAE 100C-UAF	Consult Ophir representative Consult Ophir representative	122 122
100C-UAU	Consult Ophir representative	122
1000-0A0	Consult Ophir representative	122
120K-W	7Z02691	74, 251
150C-SH	7N77023	56, 123
150C-UAE	Consult Ophir representative	123
150C-UAF	Consult Ophir representative	123
150C-UAU	Consult Ophir representative	123
150W-SH	771001	56
150W-UAE	Consult Ophir representative	123
150W-UAF 150W-UAU	Consult Ophir representative Consult Ophir representative	123 123
600W-UAE	Consult Ophir representative	123
600W-UAF	Consult Ophir representative	124
600W-UAU	Consult Ophir representative	124
1000W / L1500W Protective Housing	7Z08334	83, 94
1000W-BB-34	7Z02750	67
1000W-BB-34-QUAD	7Z07936	64, 67, 92
1000W-LP2-34	7Z02774	67
1000WP-BB-34	7Z02753	67
5000W / 10K-W / 15K-W Protective Housing	7Z08344	84
5000W-BB-50	7Z02754	70, 251
5000W-LP2-50 5000WP-LP2-50	7Z02773 7Z02788	70 70
Ariel	7Z02788	70
ATP-K	PH00128	222
Battery Pack for LaserStar	7Z14006A	148
Battery Pack for StarLite and StarBright	7E14008	140, 146
Battery Pack for Vega and Quasar	7E14007A	140, 144, 157
BC20	7Z02481	29
BD10K-W	7Z17205	81, 226
BD5000W-BB-50	7Z17201	81
BDFL1500A-BB-65	7Z17203	81
BDFL500A-BB-50	7Z17200	81
Beam Deflector Assembly for 1064 nm, high damage threshold	SP90284	224
Beam Deflector Assembly for 266 nm, high damage threshold Beam Deflector Assembly for 350-1200 nm only	SP90287 SP90263	224 224
Beam Deflector Assembly for 355 nm, high damage threshold	SP90203	224
Beam Deflector Assembly for 532 nm, high damage threshold	SP90285	224
Beam Splitter Assembly	7Z17001	109
Beam splitter for 4X reducing UV image converter	SPZ17007	238
Beam splitter for 4X expander	SPZ17027	232
Beam splitter large wedge	SPZ17018	234
BeamCheck™	SP90411	259
BeamMic to BGP Upgrade	SP90317	209
BeamMic to BGS Upgrade	SP90316	209
BGP license for BSQ-SP921	SP90244	247
BGP license for BSQ-XC130 BGP-GigE-SP1201	SP90508 SP90523	247 199
BGP-GigE-SP1201 (for USA only)	SP90523 SP90547	199
BGP-GigE-SP1203	SP90524	199
BGP-GigE-SP1203 (for USA only)	SP90548	199
BGP-LBS-300s-BB-CAL-LT665	SP90484	212
BGP-LBS-300s-NIR-CAL-LT665	SP90483	212
BGP-LBS-300s-UV-CAL-LT665	SP90481	212
BGP-LBS-300s-VIS-CAL-LT665	SP90482	212
BGP-USB3-LT665	SP90378	196
BGP-USB3-LT665-1550	SP90385	198
BGP-USB3-SP920s	SP90550	195
BGP-USB3-SP920s-1550	SP90562	198
BGP-USB3-SP932U BGP-USB-L11059	SP90607 SP90320	194 196, 239
	SP90320 SP90241	196, 239
BGP-USB-XC130	01 00241	
BGP-USB-XC130 BGS license for BSQ-SP920	SP90214	247
BGS license for BSQ-SP920	SP90214 SP90480	247 212
	SP90214 SP90480 SP90479	247 212 212
BGS license for BSQ-SP920 BGS-LBS-300s-BB-CAL-LT665	SP90480	212
BGS license for BSQ-SP920 BGS-LBS-300s-BB-CAL-LT665 BGS-LBS-300s-NIR-CAL-LT665	SP90480 SP90479	212 212

Product	P/N	Page
BGS-USB3-LT665-1550	SP90384	198
BGS-USB3-SP920s	SP90549	195, 226
BGS-USB3-SP920s-1550	SP90561	198
BGS-USB3-SP932U	SP90606	194, 226
BM-USB3-SP920s	SP90551	209
BM-USB3-SP920s-1550	SP90563	209
BM-USB3-SP932U	SP90608	209
Bracket for PD10-C, PD10-IR-C, PD10-pJ-C, PD10-IR-pj-C	7Z08275	109
Bracket for PE50-C, PE50BF-C	7Z08270	109
Bracket for PE9-C, PE9-ES-C, PE10-C, PE10BF-C, PE25-C, PE25BF-C	7Z08269	109
BSQ SP300 to SP920 upgrade	SP90511	247
BSQ-A	SP90445	246
BSQ-Lens Kit 266-1550	SP90449	247
BSQ-Lens Kit 650-1700	SP90450	247
BSQ-Lens Kit Extended NIR 400mm	SP90455	247 247
BSQ-Lens Kit Extended NIR 600mm BSQ-Lens Kit NIR 400mm	SP90485 SP90454	247
BSQ-Lens Kit UV 500mm	SP90454 SP90451	247
BSQ-Lens Kit VIS 400mm	SP90453	247
BSQ-Lens Kit VIS 500mm	SP90452	247
BSQ-Lens NIR 750mm	SP90556	247
BSQ-Lens UV 1000mm	SP90558	247
BSQ-Lens UV 750mm	SP90554	247
BSQ-Lens VIS 1000mm	SP90559	247
3SQ-Lens VIS 7000/1/1/1 3SQ-Lens VIS 750mm	SP90555	247
BSQ-Lens XNIR 750mm	SP905557	247
BSQ-LERIS XNIR 750MM BSQ-PY-M	SP90557 SP90410	247
BSQ-PY-M BSQ-SP920	SP90410 SP90502	246
BSQ-SP920 BSQ-SP920-A	SP90502 SP90521	240
BSQ-SC-920-A BSQ-XC130	SP90444	247
BSQ-XC130-KEY	SP90503	240
BT50A-15	7Z17204	52
BT-I	SP90135	229
BT-II	SP90133	229
BT-II-YAG	SP90133	229
BT-I-YAG BT-I-YAG	SP90173	229
BH-Integrated-150-NIR-155-CC-Link	SP90537	254
BW-Integrated-150-NIR-155-Ethernet/IP	SP90528	254
BW-Integrated-150-NIR-155-Profinet	SP90512	254
BW-Integrated-500-NIR-155-CC-Link	SP90538	255
BW-Integrated-500-NIR-155-Ethernet/IP	SP90529	255
BW-Integrated-500-NIR-155-Profinet	SP90527	255
BW-NIR-2-50-AM	SP90470	257
BW-NIR-2-55	SP90391	251
BW-NIR-2-155	SP90390	251
Carrying Case for Vega, StarLite, StarBright, Nova II, Nova	1J02079	140, 142, 144, 146, 150, 15
Centauri Dual Channel	7Z01701	132, 138
Centauri Dual Channel Activation Code	7Z11056	138, 151
Centauri Single Channel	7Z01700	132, 138
C-Mount, Photodiode Triager	SP90437	240
C-NFP Assy	SP90291	241
Comet 1K	7Z02702	80
Comet 10K	7Z02705	80
Comet 10K-HD	7Z02706	80
Cup aperture	SP90476	251
Damage Threshold Test Plates- BB type	7E06031C	110
Damage Threshold Test Plates- BF type	7E06031D	110
Damage Threshold Test Plates- Metallic type	7E06031A	110
Damage Threshold Test Plates- THz type	7E06031F	110
DPFSA	PH00053	231
EA-1	7Z01240	133, 155
EA-1 Ethernet Cable	7E01192	151, 155
F100A-PF-DIF-33	7Z02744	60
F150A-BB-26	7Z02727	60
F150A-BB-26-PPS	7Z07901	55, 60, 91
F50A-BB-18	7Z02718	60
F80(120)A-CM-17	7Z07103	54
FC, FC/APC Adapter for PD300-IRG	7Z08216	32
FC, FC/APC fiber adapter	7Z08229	32, 93, 109, 109, 113
Female SM1 to SM1 Adapter for PD300R series	1G02260	32
Fiber adapter mounting bracket for 30A-BB-18, 30A-N-18, 30(150)A-BB-18, 30(150)A-LP2-18, F50A-BB-18	7Z08211	93
Fiber adapter mounting bracket for 30A-P-17, 30(150)A-SV-17, 30(150)A-HE-17	7Z08230	93
Fiber adapter mounting bracket for 3A-IS, 3A-IS-IRG	7Z08213	32
Fiber adapter mounting bracket for 50(150)A-BB-26, 50(150)A-BB-26-PPS, F150A-BB-26,	7Z08210	93
F150A-BB-26-PPS, 50(150)A-BB-26-QUAD Fiber adapter mounting bracket for FL250A-BB-35, FL250A-LP2-35, L50(150)A-BB-35,	7Z08265	93

Product	P/N	Page
Fiber adapter mounting bracket for FL400A-BB-50, FL250A-BB-50, FL400A-LP2-50, FL250A-BB-50-PPS	7Z08212	93
Fiber adapter mounting bracket for IS-1-2W	7Z08331	32
Fiber adapter mounting bracket for L40(250)A-BB-50, L40(250)A-LP2-50, L50(250)A-BB-50	7Z08238	93
Fiber adapter mounting bracket for PD300R series and FPS-1	1G02259	32
Fiber adapter mounting bracket SMA type	1G01236A	32, 93, 109, 113
Filter for 355nm	SPZ08246	223
FL1100A-BB-65	7Z02761	63
FL1100A-LP2-65	7Z02784	63
FL250A-BB-35	7Z02728	61
FL250A-BB-50	7Z02739	62
FL250A-BB-50-PPS	7Z07902	62, 64, 92
FL250A-LP2-35	7Z02777	61
FL250A-LP2-DIF-33	7Z02787	61
FL400A-BB-50	7Z02734	62
FL400A-LP2-50	7Z02778	62
FL600A-BB-65	7Z02762	63
FL600A-LP2-65	7Z02779	63
Flange attachment	7Z08306	39
FPD (except FPS-1) to IS6 Adapter	7Z08350	39, 113
FPD-IG-175	7Z02509	113
FPD-IG-25	7Z02508	113
FPD-UV-3000	7Z02506	113
FPD-VIS-300	7Z02507	113
FPE80BF-DIF-C	7Z02950	108
FPS-1 Fast Photodetector	7Z02505	113
	SP90188	225
FSA-100Y		
FSA-150Y	SP90190	225
FSA-50Y	SP90187	225
FSA-BGP-BB-SP920s	SP90601	212
FSA-BGP-NIR-SP920s	SP90599	212
FSA-BGP-UV-SP920s	SP90595	212
FSA-BGP-VIS-SP920s	SP90597	212
FSA-BGS-BB-SP920s	SP90602	212
FSA-BGS-NIR-SP920s	SP90600	212
FSA-BGS-UV-SP920s	SP90596	212
FSA-BGS-VIS-SP920s	SP90598	212
Heat Sink	7Z08267	109
Heavy Duty Stand for 10K-W and 15K-W	7Z08330	82, 94
Helios Plus - EtherCAT	7Z07105	75
Helios Plus - EtherNet/IP	7Z07101	75
Helios Plus - EtherNet/IP-M	7Z07104	75
Helios Plus - Profinet	7Z07100	75
IS-1" Port cover	7Z08282A	39
IS-1" Port plug	7Z08280A	39
IS1.5-IRG-FPD-800	7Z02493	36
IS1.5-VIS-FPD-800	7Z02491	35
IS-1-2W	7Z02484	34
IS-2.5" Port cover	7Z08281A	39
IS-2.5" Port plug	7Z08283A	39
IS6-C for collimated beams	7Z02474	37
IS6-C-IR	7Z02476	37
IS6-C-UV	7Z02472	37
IS6-C-UV-2.5"	7Z02485	37
IS6-C-VIS	7Z02470	37
IS6-D for divergent beams	7Z02470	37
IS6-D-IR	7Z02490	38
IS6-D-IR-170	7Z02490	38
IS6-D-UV		
	7Z02489	38
IS6-D-VIS	7Z02488	38
Juno	7Z01250	133, 153, 251
Juno+	7Z01252	133, 154
L30A-10MM	7Z02273	49
L30A-EX-10MM	7Z02686	49
L30C- SH	773434	56, 121
L30C-LP2-26-SH	7Z02775	56, 79, 121
L30C-UAE	Consult Ophir representative	121
L30C-UAF	Consult Ophir representative	121
L3OC-UAU	Consult Ophir representative	121
L40(150)A-IPL	7Z02771	59
L40(100)A-FIL L40(200)A-EX-50	7Z02795	57
L40(250)A-BB-50	7Z02793	57
L40(250)A-LP2-50	7Z02794	57, 79
L40(500)A-LP2-DIF-35	7Z02797	57, 79
L50(150)A-BB-35	7Z02730	53
L50(150)A-LP2-35	7Z02785	53
L50(150)A-PF-35	7Z02737	53
		58
L50(150)A-PF-35 L50(250)A-BB-50	7Z02737 7Z02796	

Product	P/N	Page
L50(300)A	7Z02658	58
L50(300)A-IPL	7Z02780	59
L50(300)A-LP2-65	7Z02782	58, 59
L50(300)A-PF-65	7Z02743	58
L100(500)A-PF-120	7Z02765	69
L150C-UAE	Consult Ophir representative	124
L150C-UAF	Consult Ophir representative	124
L150C-UAU	Consult Ophir representative	124
L250W	7Z02688	66
L250W-UAE	Consult Ophir representative	124
L250W-UAF	Consult Ophir representative	124
L250W-UAU	Consult Ophir representative	124
L300W-LP2-50	7Z02776	66
L300W-UAE	Consult Ophir representative	124
L300W-UAF	Consult Ophir representative	124
L300W-UAU	Consult Ophir representative	124
L1500W-BB-50	7Z02752	68
L1500W-LP2-50	7Z02772	68
L2000W-BB-120	7Z02751	69
L2000W-PF-120	7Z02792	69
Large C-mount Wedge Splitter	SP90273	224
LaserSar 2 channel	7Z01601	132, 148
LaserStar	7Z01600	132, 148
LaserStar IEEE Option	7Y78300	148, 151
LaserStarAN Adapter	7Z11004	148, 151
LBS-100	SP90061	228
LBS-100 filter set	SP90141	228
LBS-100 IR 0.5	SP90058	228
LBS-100 IR 5.0	SP90059	228
LBS-100 to 4X beam reducer adapter	SPZ17029	228, 234, 239
LBS-100 to L11059 adaptor	SP90196	228
LBS-100 YAG	SP90057	228
LBS-100 -YAG filter set	SP90142	228
LBS-300 to L11059 Adapter	SP90571	196, 239
LBS-300HP-NIR	SP90540	226
LBS-300s-BB	SP90467	209, 224
LBS-300s-NIR	SP90466	224
LBS-300s-UV	SP90464	224
LBS-300s-VIS	SP90465	224
LBS-400 C-Mount Adapter	SP90352	227, 239
LBS-400 to L11059 Adapter	SP90439	196, 227, 239
LBS-400 to Pyrocam™ Adapter	SP90510	227, 239
LBS-400-IR	SP90349	227
LBS-400-NIR	SP90354	227
LBS-400-UV	SP90351	227
Locking Ethernet Cable	SP90394	251
LT to External C-Mount Adapter	SP90576	224
LT to Internal C-Mount Adapter	SP90577	224
M6 X 1.0 Mount, Photodiode Trigger	SP90435	240
Metric Water Fitting 1/4"NPT to 12mm O.D. tubing	7Z08352	86, 94
Metric Water Fitting 1/8"NPT to 10mm O.D. tubing	7Z08353	86, 94
N Polarity Power Supply/Charger AC/DC 12V 2A N-2.1x5.5		
IN Polarity Power Supply/Charger AC/DC 12V ZA IN-2. 1X3.5	7E05029	94, 110, 138, 142, 144, 148
ND1 nore v10 ottonuotor	770000	150, 151, 155, 156, 157
ND1 nom. x10 attenuator	7Z08200	113
ND1 stackable filter (red housing)	SPZ08234	221
ND2 nom. x50 attenuator	7Z08201	113
ND2 stackable filter (black housing)	SPZ08235	221
ND3 stackable filter (green housing)	SPZ08253	221
Nova	7Z01500	133, 150
Nova Battery Pack	7E14005A	150
Nova II	7Z01550	132, 144
Nova PE-C adaptor	7Z08272	110, 150
Nova RS232 Assembly - 2m cable	7Y78105	150, 151
Nova RS232 Assembly - 5m cable	7Y71052	152, 151
Nova RS232 Assembly - 8m cable	7171052	150, 151
NS2s-Ge/3.5/1.8-PRO	PH00467	219, 239
NS2s-Ge/3.5/1.8-STD	PH00459	219, 239
NS2s-Ge/9/5-PRO	PH00468	219, 239
NS2s-Ge/9/5-STD	PH00460	219, 226
NS2s-Pyro/9/5-PRO	PH00470	219, 239
•	PH00462	
NS2s-Pyro/9/5-STD		219, 239
NS2s-Si/3.5/1.8-PRO	PH00464	219, 239
	PH00456	219
NS2s-SI/3.5/1.8-STD		
NS2s-SI/3.5/1.8-STD NS2s-Si/9/5-PRO	PH00465	219, 239
	PH00465 PH00457	
NS2s-Si/9/5-PRO		219, 239 219, 239 219

Product	P/N	Page
PD10-C	7Z02944	99
PD10-IR-C	7Z02955	99
PD10-IR-pJ-C	7Z02946	99
PD10-pJ-C	7Z02945	99
PD300	7Z02410	25
PD300 F.O. Adapter FC, FC/APC type	7Z02213	32
PD300 F.O. Adapter SC type	7Z08221	32
PD300 F.O. Adapter SMA type	7Z02212	32
PD300 F.O. Adapter ST type	7Z02210	32
PD300-1W	7Z02411A	25
PD300-3W	7Z02426	25
PD300-BB	7Z02405	29
PD300-BB-50mW	7Z02440	29
PD300-CDRH-3.5mm	7Z08336	32
PD300-CDRH-7mm	7Z02418	32
PD300-CIE	7Z02406	29
PD300-IR	7Z02412	26
PD300-IRG	7Z02402	26
PD300-MS	7Z02482	28
PD300R	7Z02436	27
PD300R-3W	7Z02437	27
PD300R-CDRH-7mm	7Z08347	32
PD300R-IR	7Z02439	27
PD300RM-8W	7Z02480	42
PD300RM-UV	7Z02479	42
PD300RM-UVA	7Z02492	42
PD300R-UV	7Z02438	27, 40
PD300-TP	7Z02424	25
PD300-UAS	Consult Ophir representative	119
PD300-UV	7Z02413	26, 40
PD300-UV	7Z02413	26, 40
PD300-UV-193	7Z02413A	26
PE XX-C-RS232	Consult Ophir representative	129
PE100BF-DIF-C	7Z02942	107
PE10BF-C	7Z02938	101
PE10-C	7Z02932	101
PE10-C-RE	Consult Ophir representative	129
PE25BF-C	7Z02935	102
PE25BF-DIF-C	7Z02941	104
PE25-C	7Z02937	102
PE50BB-DIF-C	7Z02947	105
PE50BF-C	7Z02934	103
PE50BF-DIF-C	7Z02940	105
PE50BF-DIFH-C	7Z02943	105
PE50-C	7Z02936	103
PE50-DIF-C	7Z02939	104
PE50-DIF-ER-C	7Z02948	107
PE50U-DIFH-C	7Z02957	104
PE80BF-DIF-C	7Z02954	108
PE9-C	7Z02933	100
PE9-ES-C	7Z02949	100
PE-C to PE size Adaptor	7Z08273	110
PE-C-RE	Consult Ophir representative	129
PFSA	PH00052	231
Photodiode Trigger Cable for SP300, 6ft	SP90430	240
Photodiode Trigger Cable for SP907, SP928, 6ft	SP90431	240
Photodiode Trigger Cable to BNC for SP920G, SP920s, L11059, Xeva, Pyrocam III, 6ft	SP90433	240
Photodiode Trigger Cable to SMA for LT665, Pyrocam™ IIIHR & IV, SP1201, SP1203, 6ft	SP90432	240
Photodiode Trigger, InGaAs, 1800	SP90409	240
Photodiode Trigger, Si, 1100	SP90408	209, 240
Protective Housing for 5000W /10K-W /15K-W	7Z08277	94
Pulsar USB Cable	7E01202	151, 156
Pulsar-1	7Z01203	133, 156
Pulsar-2	7201203	133, 156
Pulsar-4	7Z01202	133, 156
PY-III-HR-C-A-PRO		204, 239
	SP90405	
PY-III-HB-C-MIB-PBO	SP90405 SP90415	204 239
PY-III-HR-C-MIR-PRO PY-III-HR-W-BaF2-I Incoated	SP90415	204, 239
PY-III-HR-W-BaF2-Uncoated	SP90415 SP90373	205
PY-III-HR-W-BaF2-Uncoated PY-III-HR-W-BK7-1.064	SP90415 SP90373 SP90365	205 205
PY-III-HR-W-BaF2-Uncoated PY-III-HR-W-BK7-1.064 PY-III-HR-W-GE-3-5.5	SP90415 SP90373 SP90365 SP90368	205 205 205
PY-III-HR-W-BaF2-Uncoated PY-III-HR-W-BK7-1.064 PY-III-HR-W-GE-3-5.5 PY-III-HR-W-GE-8-12	SP90415 SP90373 SP90365 SP90368 SP90370	205 205 205 205 205
PY-III-HR-W-BaF2-Uncoated PY-III-HR-W-BK7-1.064 PY-III-HR-W-GE-3-5.5 PY-III-HR-W-GE-8-12 PY-III-HR-W-GE-10.6	SP90415 SP90373 SP90365 SP90368 SP90370 SP90369	205 205 205 205 205 205
PY-III-HR-W-BaF2-Uncoated PY-III-HR-W-BK7-1.064 PY-III-HR-W-GE-3-5.5 PY-III-HR-W-GE-8-12 PY-III-HR-W-GE-10.6 PY-III-HR-W-POLY-THZ	SP90415 SP90373 SP90365 SP90368 SP90370 SP90369 SP90374	205 205 205 205 205 205 205 205
PY-III-HR-W-BaF2-Uncoated PY-III-HR-W-BK7-1.064 PY-III-HR-W-GE-3-5.5 PY-III-HR-W-GE-8-12 PY-III-HR-W-GE-10.6 PY-III-HR-W-POLY-THZ PY-III-HR-W-SI-1.05-2.5	SP90415 SP90373 SP90365 SP90368 SP90370 SP90369 SP90374 SP90366	205 205 205 205 205 205 205 205 205
PY-III-HR-W-BaF2-Uncoated PY-III-HR-W-BK7-1.064 PY-III-HR-W-GE-3-5.5 PY-III-HR-W-GE-8-12 PY-III-HR-W-GE-10.6 PY-III-HR-W-POLY-THZ PY-III-HR-W-SI-1.05-2.5 PY-III-HR-W-SI-2.5-4	SP90415 SP90373 SP90365 SP90368 SP90370 SP90369 SP90374 SP90366 SP90367	205 205 205 205 205 205 205 205 205 205
PY-III-HR-W-BaF2-Uncoated PY-III-HR-W-BK7-1.064 PY-III-HR-W-GE-3-5.5 PY-III-HR-W-GE-8-12 PY-III-HR-W-GE-10.6 PY-III-HR-W-POLY-THZ PY-III-HR-W-SI-1.05-2.5	SP90415 SP90373 SP90365 SP90368 SP90370 SP90369 SP90374 SP90366	205 205 205 205 205 205 205 205 205

Product	P/N	Page
PY-III-HR-W-ZNSE-10.6	SP90371	205
PY-IV-C-A-PRO	SP90404	204, 239
PY-IV-C-MIR-PRO	SP90414	204, 239
PY-IV-W -ZNSE-2-5	SP90308	205
PY-IV-W-BK7-1.064	SP90301	205
PY-IV-W-GE-10.6	SP90305	205
PY-IV-W-GE-3-5.5	SP90304	205
PY-IV-W-GE-8-12	SP90306	205
PY-IV-W-POLY-THZ	SP90309	205
PY-IV-W-SI-1.05-2.5	SP90302	205
PY-IV-W-SI-2.5-4	SP90303	205
PY-IV-W-ZNSE-10.6	SP90307	205
PY-IV-W-ZNSE-UNCOATED	SP90336	205
QBH-L-Fiber Adapter	7Z08348	82,94
QBH-S-Fiber Adapter	7Z08349	82, 94
Quasar Bluetooth Interface	7Z01300	133, 157
RM9 sensor	7Z02952	44
RM9 sensor and RMC1 Chopper	7Y70669	44
RM9-PD sensor	7Z02953	44
RM9-PD sensor and RMC1 Chopper	7Y70672	44
RM9-THz sensor	7Z02956	44
RM9-THz sensor and RMC1 Chopper	7Y70678	44
Rotation Mount	SP90346	251
RS232 cable for Centauri & StarBright	7E01213	138, 140, 151
RS232 Cable for LaserStar	7E01121	148, 151
RS232 Cable for Vega and Nova II	7E01206	140, 144, 151
SC fiber adapter	7Z08227	32, 93, 109, 113
Scatter shield for 10K-W /15K-W	7Z08295	85, 94
Scatter shield for 16K-W	7Z08355	73, 85, 94
Scatter shield for 30K-W	7Z08293	83, 94
Scope Adapter	7Z11012	109
Set of aperture masks	7Z08307	39
SH to BNC Adapter	7Z11010	94
SMA fiber Adapter for PD300-IRG	7Z08222	32
SP1201 Kit	SP90535	199
SP1203 Kit	SP90536	199
Spacer assembly set for objectives	SPZ08261	232
ST fiber adapter	7Z08226	32, 93, 109, 113
Standard Analog Output Connector	7E02008	138, 140, 142, 144, 146, 150, 151, 154
StarBright	7Z01580	132, 140
StarLite	7Z01565	132, 146
StarLite USB activation code	7Z11049	146, 151
Swivel stand for BC20 sensor	1209004	29
Thru Hole Mount, Photodiode Trigger	SP90436	240
USB Cable for Centauri, Starlite & StarBright	7E01279	138, 140, 146, 151
USB Cable for Juno and EA1	7E01217	151, 153, 154, 155
USB Cable for Vega and Nova II	7E01205	140, 144, 151
USB to Bluetooth adapter	7E01203	157
UV converter assembly for 4X beam expander	SPZ17019	233, 238, 239
UV ND Filters	SP217019 SP90228	223
Veqa		
0	7Z01560	132, 142, 251
Wide Beam Imager (WB-I)	SP90553	237, 239
Wide Beam Imager SWIR	SP90605	237

Part Number Index

P/N	Page	P/N	Page	P/N	Page	P/N	Page
771001	56	7Z02413A	26	7Z02751	69	7Z07935	46, 51, 90
773434	56, 121	7Z02418	32	7Z02752	68	7Z07936	64, 67, 92
1G01236A	32, 93, 109, 113	7Z02424	25	7Z02753	67	7Z07937	55, 91
1G01332	86, 94	7Z02426	25	7Z02754	70, 251	7Z08200	113
1G02259	32	7Z02426	27	7Z02757	74, 251	7Z08201	113
1G02260	32	7Z02430	27	7Z02761	63	7Z08210	93
1G02406	86, 94	7Z02437		7Z02761	63	7Z08210 7Z08211	93
1G02400			27, 40				
	86, 94	7Z02439	27	7Z02764	71	7Z08212	93
1J02079	140, 142, 144, 146, 150, 151	7Z02440	29	7Z02765	69	7Z08213	32
	150, 151	7Z02470	37	7Z02767	46	7Z08216	32
1Z09004	29	7Z02472	37	7Z02770	73	7Z08221	32
7E01121	148, 151	7Z02474	37	7Z02771	59	7Z08222	32
7E01192	151, 155	7Z02476	37	7Z02772	68	7Z08226	32, 93, 109, 113
7E01202	151, 156	7Z02479	42	7Z02773	70	7Z08227	32, 93, 109, 113
7E01205	140, 144, 151	7Z02480	42	7Z02774	67	7Z08229	32, 93, 109, 109,
7E01206	140, 144, 151	7Z02481	29	7Z02775	56, 79, 121	1200220	113
7E01213	138, 140, 151	7Z02482	28	7Z02776	66	7Z08230	93
7E01210	151, 153, 154, 155					7Z08238	93
		7Z02484	34	7Z02777	61		93
7E01279	138, 140, 146, 151	7Z02485	37	7Z02778	62	7Z08265	
7E02008	138, 140, 142, 144,	7Z02486	38	7Z02779	63	7Z08267	109
7505005	146, 150, 151, 154	7Z02487	37	7Z02780	59	7Z08269	109
7E05029	94, 110, 138, 142,	7Z02488	38	7Z02782	58, 59	7Z08270	109
	144, 148, 150, 151,	7Z02489	38	7Z02784	63	7Z08272	110, 150
	155, 156, 157	7Z02490	38	7Z02785	53	7Z08273	110
7E05047	94, 140, 146, 151	7Z02491	35	7Z02786	53	7Z08275	109
7E06031A	110	7Z02491 7Z02492	42	7Z02780	61	7Z08277	94
7E06031C	110					7Z08280A	39
7E06031D	110	7Z02493	36	7Z02788	70	7Z08281A	39
7E06031F	110	7Z02505	113	7Z02791	73		
7E10039	157	7Z02506	113	7Z02792	69	7Z08282A	39
7E10005A	150	7Z02507	113	7Z02793	57	7Z08283A	39
		7Z02508	113	7Z02794	57, 79	7Z08285	39
7E14007A	140, 144, 157	7Z02509	113	7Z02795	57	7Z08286	39
7E14008	140, 146	7Z02602	56, 120	7Z02796	58	7Z08288	39
7N77023	56, 123	7Z02621	40, 46	7Z02797	57, 79	7Z08289	39, 113
7Y70669	44	7Z02622	46	7Z02798	77	7Z08290	39
7Y70672	44					7Z08293	83, 94
7Y70678	44	7Z02624	48	7Z02932	101	7Z08295	
7Y71051	150, 151	7Z02628	47	7Z02933	100		85, 94
7Y71052	152, 151	7Z02637	49	7Z02934	103	7Z08305A	39
7Y78105	150, 151	7Z02638	48	7Z02935	102	7Z08306	39
		7Z02649	50	7Z02936	103	7Z08307	39
7Y78300	148, 151	7Z02658	58	7Z02937	102	7Z08330	82, 94
7Z01201	133, 156	7Z02680	56. 122	7Z02938	101	7Z08331	32
7Z01202	133, 156	7Z02686	49	7Z02939	104	7Z08334	83, 94
7Z01203	133, 156	7Z02687	47	7Z02940	105	7Z08336	32
7Z01240	133, 155	7Z02688	66	7Z02941	104	7Z08344	84
7Z01250	133, 153, 251	7Z02691		7Z02941 7Z02942	107	7Z08345	86, 94
7Z01252	133, 154		74, 251			7Z08346	86, 94
7Z01300	133, 157	7Z02692	49	7Z02943	105		
7Z01500	133, 150	7Z02693	50	7Z02944	99	7Z08347	32
7Z01550	132, 144	7Z02695	50	7Z02945	99	7Z08348	82, 94
7Z01550 7Z01560		7Z02696	49	7Z02946	99	7Z08349	82, 94
	132, 142, 251	7Z02699	53	7Z02947	105	7Z08350	39, 113
7Z01565	132, 146	7Z02702	80	7Z02948	107	7Z08352	86, 94
7Z01580	132, 140	7Z02705	80	7Z02949	100	7Z08353	86, 94
7Z01600	132, 148	7Z02706	80	7Z02950	108	7Z08355	73, 85, 94
7Z01601	132, 148	7Z02718	60	7Z02950 7Z02952		7Z08356	86, 94
7Z01700	132, 138				44	7Z11004	148, 151
7Z01701	132, 138	7Z02720	46	7Z02953	44	7Z11004 7Z11010	
7Z02210	32	7Z02722	54	7Z02954	108		94
7Z02212	32	7Z02724	54	7Z02955	99	7Z11012	109
7Z02212	32	7Z02727	60	7Z02956	44	7Z11049	146, 151
		7Z02728	61	7Z02957	104	7Z11056	138, 151
7Z02273	49	7Z02729	54	7Z07100	75	7Z14006A	148
7Z02402	26	7Z02730	53	7Z07101	75	7Z17001	109
7Z02403	34	7Z02734	62	7Z07102	72, 251	7Z17200	81
7Z02404	34, 40	7Z02737	53	7Z07102	54	7Z17201	81
7Z02405	29					7Z17201	81
7Z02406	29	7Z02738	50	7Z07104	75		
7Z02410	25	7Z02739	62	7Z07105	75	7Z17204	52
7Z02410	25	7Z02740	50	7Z07900	49, 55, 91	7Z17205	81, 226
		7Z02742	47	7Z07901	55, 60, 91	PH00052	231
7Z02412	26	7Z02743	58	7Z07902	62, 64, 92	PH00053	231
7Z02413	26, 40					PH00128	222
		1202144	00	7207904	49, 51. 90	11100120	
7Z02413	26, 40	7Z02744 7Z02750	60 67	7Z07904 7Z07934	49, 51, 90 46, 51, 90	PH00417	219

P/N	Page	P/N	Page
PH00456	219	SP90394	251
PH00457	219, 239	SP90404	204, 239
PH00459	219, 239	SP90405	204, 239
PH00460	219, 226	SP90408	209, 240
PH00462	219, 239	SP90409	240
PH00464	219, 239	SP90410	246
PH00465		SP90410	259
	219, 239		
PH00467	219, 239	SP90412	205
PH00468	219, 239	SP90414	204, 239
PH00470	219, 239	SP90415	204, 239
SP90038	235	SP90430	240
SP90057	228	SP90431	240
SP90058	228	SP90432	240
SP90059	228	SP90433	240
SP90061	228	SP90434	240
SP90082	238	SP90435	240
SP90085	235	SP90436	240
SP90133	229	SP90437	240
SP90135	229	SP90439	196, 227, 239
SP90141	228	SP90444	246
SP90142	228	SP90445	246
SP90172	229	SP90449	247
SP90173	229	SP90450	247
SP90187	225	SP90451	247
SP90188	225	SP90452	247
SP90190	225	SP90453	247
SP90196	228	SP90454	247
SP90214	247	SP90455	247
SP90228	223	SP90464	224
SP90241	199	SP90465	224
SP90244	247	SP90466	224
SP90263	224	SP90467	209, 224
SP90273	224	SP90470	257
SP90284	224	SP90476	251
SP90285	224	SP90477	212
SP90286	224	SP90478	212
SP90287	224	SP90479	212
SP90291	241	SP90480	212
SP90292	241	SP90481	212
SP90293	241	SP90482	212
SP90294	241	SP90483	212
SP90295	241	SP90484	212
SP90301	205	SP90485	247
SP90302	205	SP90502	246
SP90303	205	SP90503	247
SP90304	205	SP90508	247
SP90305	205	SP90510	227, 239
SP90306	205	SP90511	247
SP90307	205	SP90512	254
SP90308	205	SP90521	247
SP90309	205	SP90523	199
SP90316	209	SP90524	199
SP90317	209	SP90527	255
SP90317	196, 239	<u>SP90527</u> SP90528	254
SP90336	205	SP90529	255
SP90346	251	SP90535	199
SP90349	227	SP90536	199
SP90351	227	SP90537	254
SP90352	227, 239	SP90538	255
SP90354	227	SP90540	226
SP90365	205	SP90547	199
SP90366	205	SP90548	199
SP90367	205	SP90549	195, 226
SP90368	205	SP90550	195
SP90369	205	SP90551	209
SP90370	205	SP90553	237, 239
SP90371	205	SP90554	247
SP90372	205	SP90555	247
SP90373	205	SP90556	247
SP90374	205	SP90557	247
SP90377	196	SP90558	247
SP90378	196	SP90559	247
SP90384	198	SP90561	198
	198	SP90562	198
	100	3590302	190
SP90385 SP90390	251	SP90563	209

N	Page
90394	251
90404	204, 239
90405	204, 239
90408	209, 240
90409	240
90410	246
90411	259
90412	205
90414	204, 239
90415	204, 239
90430	240
90431	240
90432	240
90433	240
90434	240
90435	240
90436	240
90437	240
90439	196, 227, 239
90444	246
90445	246
90449	247
90450	247
90451	247
90452	247
90453	247
90454	247
90455	247
90464	224
90465	224
90466	224
90467	209, 224
90407 90470	257
90476	251
90477	212
90478	212
90479	212
90480	212
90481	212
90482	212
90483	212
90484	212
90485	247
90502	246
90502	247
90508	247
90510	227, 239
90511	247
90512	254
90521	247
90523	199
90524	199
90527	255
90528	254
90529	255
90535	199
90536	199
90537	254
90538	255
90540	226
90547	199
90548	199
90549	195, 226
90550	195
90551	209
90553	237, 239
90554	247
90555	247
90556	247
90557	247
90558	247
90559	247
90561	198
90562	198
90563	209
90571	196, 239
	-,

P/N	Page
SP90574	224
SP90575	224
SP90576	224
SP90577	224
SP90595	212
SP90596	212
SP90597	212
SP90598	212
SP90599	212
SP90600	212
SP90601	212
SP90602	212
SP90605	237
SP90606	194, 226
SP90607	194
SP90608	209
SPF01150	238
SPF01177	238
SPG01698	235, 239
SPG02067	235
SPG02106	235
SPZ08234	221
SPZ08235	221
SPZ08246	223
SPZ08253	221
SPZ08257	232, 239
SPZ08259	232, 239
SPZ08260	232, 239
SPZ08261	232
SPZ17007	238
SPZ17015	230, 238
SPZ17017	234, 239
SPZ17018	234
SPZ17019	233, 238, 239
SPZ17022	232, 233, 239
SPZ17022+ SPZ17019	233, 238, 239
SPZ17023	238, 239
SPZ17024	238, 239
SPZ17025	230
SPZ17026	230, 233, 239
SPZ17027	232
SPZ17029	228, 234, 239
SPZ17031	230
SPZ17032	230

_

Ophir Photonics sites

Country	Company	Telephone	E-mail
USA	Ophir-Spiricon, LLC	(435) 753-3729	sales.ophir.usa@mksinst.com
Japan	Ophir Japan Ltd.	81-3-3556-2781	oj.info@mksinst.com
Israel	Ophir Optronics Ltd.	972-2-5487460	eli.israel@mksinst.com
Germany	Ophir Spiricon Europe	00800-6744-7678	juergen.reingruber@mksinst.com

Distributors list

Country	Company	Telephone	E-mail		Profilers
Australia & N.Z	NewSpec Pty Ltd.	61 8 8463 1967	michael.ventura@newspec.com.au	•	•
Austria	Ophir Spiricon Europe	49-6151-708-575	otto.glatz@mksinst.com	•	•
Argentina	Sirex Medica S.A.	54-11-4816-4585	insumos@sirex.com	•	•
Belarus	Testpribor-M	375-17-310-60-99	pribor-minsk@tut.by	•	•
Belgium	Ophir Spiricon Europe	49-6151-708-573	sven.kern@mksinst.com	•	•
Belgium	Ophir Spiricon Europe	49-6151-708-0	wilfried.vogel@mksinst.com	٠	•
Brazil	New SOS Laser Com. De Acess	55-11-4229 3957	soslaser@soslaser.com.br	•	•
Bulgaria	ASTEL	359-29-587-885 /86/89	n.georgiev@astelbg.com	٠	٠
Canada (AB, BC, SK))	Ophir-Spiricon,LLC	435-753-3729	kevin.kirkham@mksinst.com	٠	٠
Canada (NS, ON, QC, MB, NB, NL)	Ophir-Spiricon,LLC	413-523-9990	chuck.reagan@mksinst.com	٠	٠
Chile	Ophir-Spiricon, LLC	313-434-2141	dan.ford@mksinst.com	٠	٠
China	Titan Electro Optics Co. Ltd.	86-10-6263-4840	sales@teo.com.cn	٠	٠
Colombia / Costa Rica	Ophir-Spiricon, LLC	435-753-3729	dan.ford@mksinst.com	•	•
Croatia	LBM	386 8 200 3155	robert.s@lrm.si	•	•
Czech Republic	MIT s.r.o.	420-241-712-548	info@mit-laser.cz	•	•
Denmark	Azpect Photonics AB	46(0)-855 442 480	info@azpect.com	•	•
Estonia	Cheos Oy	358-0-400 610344	sales@cheos.fi	•	
Finland	Cheos Oy	358-201-98-64-64	sales@cheos.fi	•	
	Ophir Spiricon Europe	49-6151-708-0	wilfried.vogel@mksinst.com	•	•
Germany (Middle and East)	Ophir Spiricon Europe	49-1511 4359279	Roland.Heinze@mksinst.com	•	•
Germany (West)	Ophir Spiricon Europe	49-6151-708-573	sven.kern@mksinst.com	•	•
Germany (North)	Ophir Spiricon Europe	49-6151-708-576	sven.schipper@mksinst.com	•	•
Germany (South)	Ophir Spiricon Europe	49-6151-708-575	otto.glatz@mksinst.com	•	•
Greece	Acta Ltd.	30-210-600-3302	ageo@acta.com.gr	•	٠
Hong Kong	Titan Electro Optics	86-755-8320-5020	wen-yan@teo.com.cn	•	•
Hungary	Quantum Lasertech	36-30-539-1501	ugrai.gabor@guantumlasertech.hu	•	•
	New Age	91-022-27543777	mumbai@newagein.com	•	•
ndonesia	PT Serviam Abadimurni	62-21 8990-8142	serviam@centrin.net.id	•	•
reland	Ophir Spiricon Europe	44-7715-496812	stuart.thomson@mksinst.com	•	•
srael	Ophir Optronics Ltd.	972-2-548-7460	anat.bakal@ophiropt.com	•	
srael	New Technology	972-3-679-2054	inga@newtech.co.il		•
taly	Ophir Spiricon Europe GmbH	008-00-6744-7678	luca.porcelluzzi@mksinst.com	•	•
Korea	Soleo Co., Ltd.	82-31-420-2742	sales4@eotechnics.com	•	•
Korea	Jinsung Instruments Inc.	82-42-823-5300	jskim@jinsunginst.com		•
Latvia	SIA Optek	371 29 781 582	info@optek.lv	•	•
Lithuania	Vildoma	370-5-236-3656	g.balcaitis@vildoma.lt	•	•
Luxemburg	Ophir Spiricon Europe	49-6151-708-573	sven.kern@mksinst.com	•	•
Malaysia	Kumpulan Abex Sdn Bhd	603 5192 2898	sales@kabex.com.my	•	•
Malta	Ophir Spiricon Europe GmbH	008-00-6744-7678	luca.porcelluzzi@mksinst.com	•	•
Mexico	Ophir – Spiricon, LLC	435-753-3729	dan.ford@mksinst.com	•	•
Middle East	Ophir-Spiricon, LLC	866-755 5499	Nathan.Brouwer@mksinst.com	•	•
				•	•
Netherlands	Ophir Spiricon Europe	49-6151-708-0	sven.schipper@mksinst.com		
Netherlands	Ophir Spiricon Europe	49-6151-708-573	sven.kern@mksinst.com	•	•
Norway	Azpect Photonics AB	46(0)-855 442 480	info@azpect.com	•	•
Poland	Scitec Instruments Polska	48-22-254-9218	dorota.siwiec@scitecinstruments.pl	•	•
Portugal	M.T.Brandão, Lda.	351 2261 67370	mtb@mtbrandao.com	•	•
Romania	Electro-Total.	40-21-252-5781	anca.movila@electro-total.com	•	•
Russia	ElektroSteklo Crystaltechno	7-495-234-5952	ambukov@crystaltechno.com	•	•
Singapore	Newport Opto-Electronics	65-6451-1062	sales.sg@mksinst.com	•	٠
- · ·	Technologies (Singapore) Pte. Ltd.		5		
Slovakia	Kvant spol. s r.o.	421-2-6541-1344	Milan.Grigel@kvant.sk	•	•
	LRM	386-8 200 3155	robert.s@lrm.si	•	•
South Africa	Hitech Laser Systems	27-12-349-1250	hls@hitechlasers.co.za	•	•
	1 1	04.040775000	info@lasing.com		•
Spain Spain (Catalonia)	Ophir Spiricon Europe	34-913775006 33-6 01 01 27 32	wilfried.vogel@mksinst.com	•	•
Sweden	Azpect Photonics AB	46(0)-855 442 480	info@azpect.com	•	•
Switzerland	Ophir Spiricon Europe	49 6151-708-575	otto.glatz@mksinst.com	•	•
Switzerland	Ophir Spiricon Europe	49-6151-708-0	wilfried.vogel@mksinst.com	•	•
Taiwan	Unice E-O Services Inc.	886-3-462-6569	brianh@unice.com.tw	•	•
Taiwan	Titan Electro Optics Co.	886-2-2655-2200	sales@teo.com.tw	•	•
Thailand	Hakuto (Thailand)	66-2-255 8910	rachata@hakutothailand.com	٠	٠
	Mitra A.S.	90-212-347-4740	omerbozoglu@mitra.com.tr	٠	•
JK	Ophir Spiricon Europe	44-7715-496812	stuart.thomson@mksinst.com	•	٠
Jkraine	IVL Equipment & Engineering, Ltd		ivl@ivl.ua	•	•
JSA Southern AR, TX, LA, OK, KS, FL, GA, MS, SC, AL, TN, VT, ME, RI, Eastern Canada (NS, ON, QC, MB,	Ophir-Spiricon, LLC		chuck.reagan@mksinst.com	•	•
NB, NL) JSA Mid-Atlantic & Southeast NY, NJ, PA, MD, DC, DE, /A, WV, NC, MA, NH, CT	Ophir-Spiricon, LLC		Richard.Rieley@mksinst.com	•	•
JSA WA, Western Canada (AB, BC, SK)	Ophir-Spiricon, LLC		kevin.kirkham@mksinst.com	•	•
JSA MT, UT, CO, IA, IL, IN, KY, MO, ND, NE, OH, SD, WI			mark.szorik@mksinst.com	•	•
USA Southwest, Southern CA, AZ, NM, NV, Latin America			dan.ford@mksinst.com	•	•
JSA Southwest, Southern CA, AZ, NM, NV, Latin America. Including Puerto Rico), ID, AK, HI, WY	Ophir-Spiricon, LLC		dan.tord@mksinst.com Nathan.Brouwer@mksinst.com	•	•

Notes								

_

	0			
		16	- P.	
		9		

	 	 • •	
Notes			

_